

TRANSFLUID®

industrial & marine

drive with us

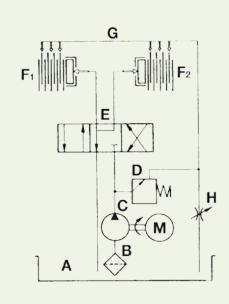
SH-SHC FRIZIONI A COMANDO IDRAULICO

SH-SHC FRIZIONI A COMANDO IDRAULICO

LE FRIZIONI TRANSFLUID A COMANDO IDRAULICO sono del tipo a dischi multipli, in materiale sinterizzato, il cui bloccaggio è assicurato da un cilindro idraulico, incorporato nella frizione, azionato da olio in pressione.

Le frizioni Transfluid a comando idraulico offrono i seguenti vantaggi d'installazione:

- Nessuna regolazione è richiesta per compensare l'usura dei dischi, in quanto il pistone può avanzare automaticamente in funzione dell'usura.
- Possibilità di trasmettere una coppia costante per tutta la durata dei dischi, in quanto non occorre una regolazione periodica.
- 3. A causa della costanza della coppia trasmessa spesso si può utilizzare una frizione di dimensioni più piccole: inoltre, poiché non si devono prevedere aperture o passaggi per la regolazione, le frizioni possono essere montate con una compattezza notevole, con conseguente diminuzione delle dimensioni della macchina.
- 4. Possibilità di trasmettere coppie elevate, specialmente nelle frizioni di maggior dimensione, in quanto lo sforzo per il bloccaggio non dipende da una operazione manuale.
- 5. Grazie al cilindro idraulico incorporato esse possono essere facilmente comandate a distanza non essendo più necessario prevedere complicati sistemi di leve e di rinvii; inoltre, se si adottano distributori idraulici con elettrovalvole, si possono facilmente inserire nei cicli lavorativi semi-automatici interamente automatici delle macchine moderne a comando elettrico.


WEITERE VORTEILE:

- **6.** Le avarie per bruciatura dei dischi sono eliminate; il comando idraulico infatti non permette lo slittamento dei dischi che nelle frizioni meccaniche è dovuto a non perfetta registrazione.
- 7. La durata dei dischi è molto più elevata; questo è molto importante nelle macchine ove un arresto per le riparazioni può compromettere altre operazioni nella linea di produzione.
- Le portate dell'olio di comando indicate in tabella presuppongono un innesto della durata di 0.1 secondi (a dischi in condizioni di max. usura)
- Il tempo di innesto è proporzionale alla portata.
- Le frizioni funzionano perfettamente se lubrificate con getto d'olio sui dischi; se questo non fosse attuabile esse possono essere immerse nell'olio per circa 8 mm senza per questo dare un eccessivo trascinamento in fase di apertura.
- La viscosità dell'olio non deve superare i 32 cST (a 40°C) quando sono previsti i passaggi minimi indicati in tabella.
- La portata del raffreddamento forzato dei dischi deve essere per ogni 7.5 kW di potenza trasmessa: 1 l/min per macchine utensili e 2 l/min per trasmissioni per veicoli.

	Prestazioni		630	640	650	660	670
Coppia dinamica	Nm	108	196	392	745	1157	
Portata olio		l/min	7.5	11	20	32	50
Pressione max.	bar	12	16	16	16	16	
Velocità max.	Velocità max.		5000	4500	3500	2900	2500
1	Entrata	kgcm ²	10	37	102.5	227.5	450
J	Uscita	kgcm ²	1.8	5.8	21.3	30	82.5

Coppia con pressione di comando 10 bar - Portata per innesto in 0.1 sec

Prodotto solo su commessa

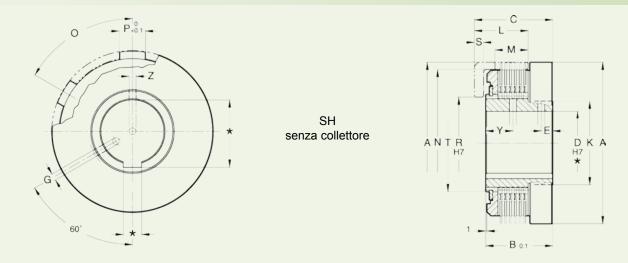
CIRCUITO IDRAULICO STANDARD

A - Serbatoio

B - Filtro di aspirazione

C - Pompa

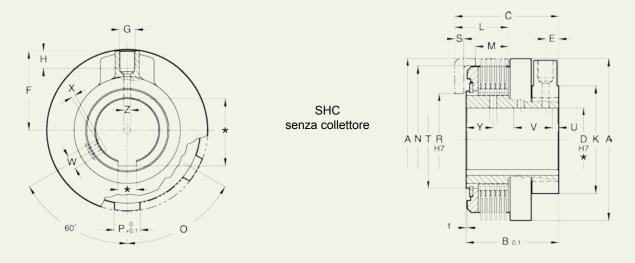
Valvola massima di pressione


E - Distributore

F₁ - Frizioni

G - Condotto di lubrificazione

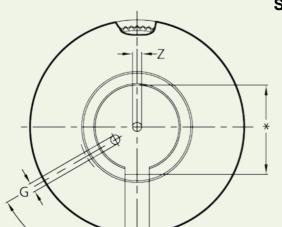
H - Valvola di strozzamento regolabile


M - Motopompa

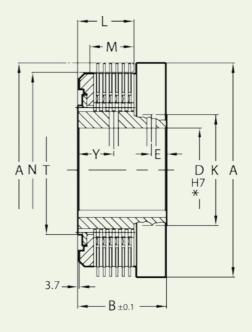
	Taglia	∑⇒ Dimensioni																		
	Tag	A	В	С	min	max	E	G	к	L	М	N	0	Р	R	Ø	Т	Y	Z	Peso kg
	SH 630	86	51	58	18	30	8.5	5	40	40	30	78	6x60°	19	47	5	46	19.5	5	1.5
	SH 640	112	54	63	25	48	9.5	5	60	44	29	103	6x60°	19	68	7	66	22	5	2.8
	SH 650	141	58	68.5	35	62	9.5	6	77	47	29	128.5	6x60°	22.2	80	8	85	24	6	4.8
	SH 660	168	59.5	72.5	45	72	10.5	8	90	49	29	154	12x30°	15.8	100	10	96	24.5	6	7.3
1	SH 670	195	72	86	55	82	12	9	100	60	38	180	12x30°	19	110	11	106	27.5	8	11.6

^{*} Da definire nell'ordinazione – Cava per chiavetta UNI 6604-69 - DIN 6885/1 – D max. cava per chiavetta ribassata DIN 6885/2

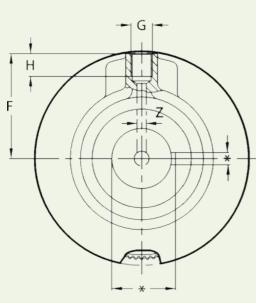
Solo su richiesta - Dimensioni non impegnative

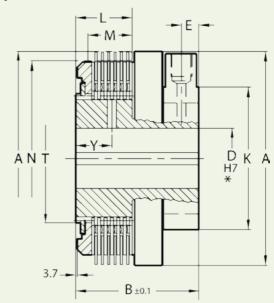


<u>alia</u>	∑⇒ Dimensioni																								
∑ty Taglia	Α	В	С	min	ı	E	F	G	н	к	L	М	N	0	Р	R	s	Т	U	V	w	х	Υ	Z	Peso kg
SHC 630	86	71	78	18	30	10	41	M12x1.5	12	56	40	30	78	6x60°	19	47	5	46	7	26	8	2	19.5	5	1.7
SHC 640	112	76	85	25	45	11	54	M12x1.5	12	75	44	29	103	6x60°	19	68	7	66	7.5	28	10	2.5	22	5	3.5
SHC 650	141	81	91	35	58	11.5	69	M14x1.5	15	94	46	29	128.5	6x60°	22.2	80	8	85	7.5	30	12	3	24	6	6
SHC 660	168	85.5	98.5	45	68	13	82	M14x1.5	15	108	49	29	154	12x30°	15.8	100	10	96	8.5	33	12	3.5	24.5	6	9.1
SHC 670	195	99	113	55	76	13.5	96	M14x1.5	15	122	60	38	180	12x30°	19	110	11	106	8.5	36	14	4	27.5	8	13.9


^{*} Da definire nell'ordinazione – Cava per chiavetta UNI 6604-69 - DIN 6885/1 – D max. cava per chiavetta ribassata DIN 6885/2

Solo su richiesta - Dimensioni non impegnative


TRANSFILLS industrial & marine



SH 690T

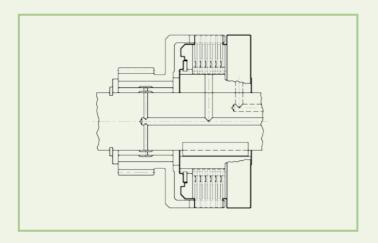
SHCU 690T

<u>.</u> <u>□</u> Dimensioni

∑∜ Tag	Α	В	min	max	E	G	к	L	М	N	т	Υ	Z
SH 690T	258	95	50	115	15	10	140	61	46	227	156	40.5	10
SCHU 690T	258	127	50	90	15.5	M16x1.5	165	61	46	227	156	40.5	10

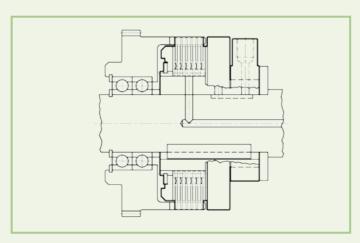
DATI TECNICI

		DATI DENTATURA CAMPANA											
	MODULO	Nr. DI DENTI	ANGOLO DI PRESSIONE	DIAMETRO PRIMITIVO	MISURAZIONE SU 2 RULLI Ø 4.5								
SH 690T SCHU 6901	2.54	93	14°30′	236.22	229.3								

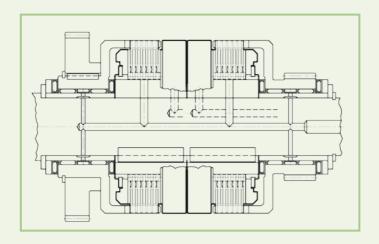

	VELOCITÀ MASSIMA	PORTATA OLIO (INNESTO IN 0.1 SEC.)	ENTRATA .	J USCITA	PESP	PRESSIONE	COPPIA DI SLITTAMENTO	
SH 690T	2000 rpm	96 l/min.	1668 kgcm ²	250 kgcm ²	27.2 kg	10 bar	2492 Nm	
SCHU 690T	1700 rpm	96 l/min.	1750 kgcm ²	250 kgcm ²	32.5 kg	10 bar	2492 Nm	

^{*} Da definire nell'ordinazione - Cava per chiavetta ISO 773 - D max. cava per chiavetta ribassata DIN 6885/2

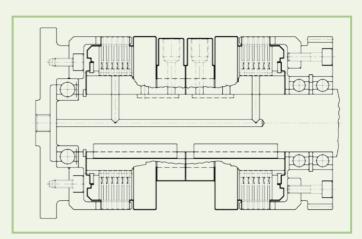
Dimensioni non impegnative


Solo su richiesta

TRANSFILIDE industrial & marine


Frizione semplice senza collettore

Prevista per alimentazione attraverso condotti nell'albero con collettore situato lontano dalla frizione. Le dimensioni ridotte e la grande capacità di questa frizione consentono di realizzare gruppi molto compatti.


Frizione semplice con collettore

Consente di realizzare l'alimentazione senza dover forare l'albero.

Due frizioni semplici contrapposte senza collettore

Particolarmente adatta per l'installazione in cambi di velocità a servocomando idraulico in quanto consente, con le sue dimensioni particolarmente ridotte, di realizzare in poco spazio schemi cinematici anche complessi.

Due frizioni semplici contrapposte con collettore

Delle quali una è usata come freno mentre l'altra è collegata ad una ruota dentata.

FASE 1 – DETERMINAZIONE DELLA COPPIA

• Tav. A - Fattore di servizio S

	Classificazione delle macchine prodotte											
	Class	· · · · · · · · · · · · · · · · · · ·										
Motore primario	Servizio leggero	Servizio moderato	Servizio medio	Servizio pesante								
Motore elettrico	1	1.5	2	2.5								
Motore diesel	1.5	2.0	2.5	3.0								

· La taglia del motore può essere utilizzata per determinare la coppia richiesta dalla frizione:

 $T = 9550 \times kW / rpm (Nm)$

- Oltre alla coppia nominale da trasmettere, è necessario considerare la caratteristica torsionale del sistema. A tal proposito è uso pratico utilizzare un fattore di servizio in funzione del tipo di motore e del tipo di servizio utilizzato dalla macchina condotta:
- TKN ≥ S x T, in cui il fattore di servizio è quello dell Tav. A

FASE 2 - SELEZIONE RAPIDA CON LA COPPIA

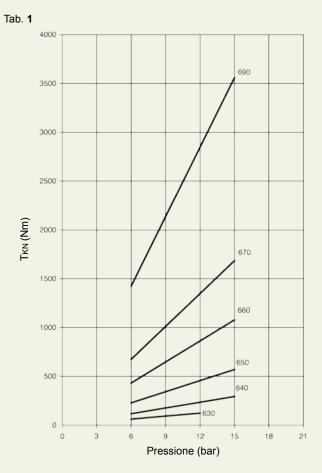
- Determinare il modello di frizione e determinare con il diagramma di Fig. 1 la taglia della frizione disponendo della coppia trasmissibile alla pressione indicata
- Verificare che la frizione selezionata può ammettere la foratura richiesta

FASE 3 - VERIFICA DELLA CAPACITÀ TERMICA

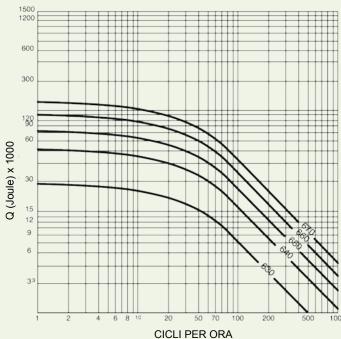
 $E = 0.005482 \times J \times (n22 - n12) < Q$

Assumendo:

E = Energia Cinetica (Joule)


J = Inerzia riferita all'albero (kgm2)

n1 = Velocità iniziale (rpm)


n2 = Velocità finale (rpm)

- Utilizzando il diagramma di Fig. 2 verificare che la frizione selezionata sia corretta per il servizio ciclico richiesto (cicli/ora)
- Se il punto operativo cade al di sopra dell'area racchiusa daciascuna curva, ripetere la procedura di selezione
- Nota: J = PD2/4

La capacità termica di raffreddamento rappresentata dalle curve soprastanti si basa su una portata di olio attraverso il pacco dischi pari a circa 4 litri /min.

Tab. 2

CHINA

TRANSFLUID BEIJING TRADE CO. LTD Beijing Ph.: +86.10.60442301-2 Fax: +86.10.60442305 tbtcinfo@transfluid.cn

FRANCE

TRANSFLUID FRANCE s.a.r.l. 38110 Rochetoirin Ph.: +33.9.75635310 Fax: +33.4.26007959 tffrance@transfluid.eu

THE NETHERLANDS - GERMANY

TRANSFLUID NORTH EUROPE B.V. (Bellmarine) NL-3992 AK, Houten Ph. +31 (0)85 4868530 tfnortheurope@transfluid.eu

RUSSIA

TRANSFLUID 000 Moscow Ph. +7.495.7782042 Mob.: +7.926.8167357 tfrussia@transfluid.eu

U.S.A

TRANSFLUID LLC Auburn, GA 30011 Ph.: +1.770.8221.777 Fax: +1.770.844.774 tfusa@transfluid.us

Global web site: www.transfluid.eu • E-commerce: www.buy-transfluid.com