

industrial & marine

K-CK-CCK GIUNTI IDRODINAMICI

DESCRIZIONE	pag.	2
CURVE CARATTERISTICHE		3
CURVE DI AVVIAMENTO		4
VANTAGGI		5
MONTAGGIO STANDARD O ROVESCIATO		6
PROGRAMMA PRODUZIONE		7 ÷ 8
VERSIONI SPECIALI (ATEX)		8
SELEZIONE		9 ÷ 12
DIMENSIONI (VERSIONI IN LINEA)	1	13 ÷ 23
CENTRO DI GRAVITÀ E MOMENTO DI INERZIA		24
DIMENSIONI (VERSIONI CON PULEGGIA RIEMPIMENTO - OLIO RACCOMANDATO	2	25 ÷ 26
DISPOSITIVI DI SICUREZZA	2	27 ÷ 29
ALTRI PRODOTTI TRANSFLUID		30
RETE DI VENDITA		

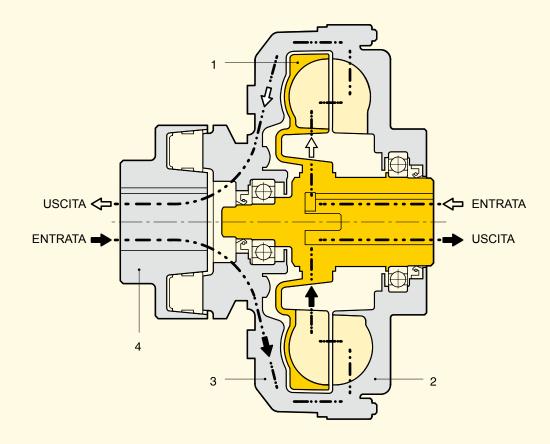
1. DESCRIZIONE

Il giunto idrodinamico TRANSFLUID, serie K, è del tipo a riempimento fisso ed è composto essenzialmente da tre principali elementi in lega leggera:

- 1 girante motrice (pompa) solidale con l'albero d'entrata
- 2 girante condotta (turbina) solidale con l'albero d'uscita
- 3 coperchio, che flangiandosi alla girante esterna, chiude a tenuta il giunto idrodinamico.

I primi due elementi possono funzionare indifferentemente sia da pompa che da turbina.

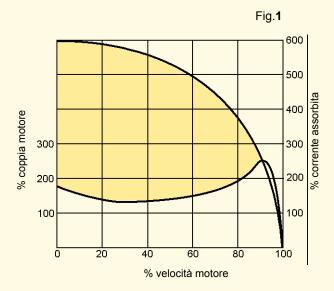
2. FUNZIONAMENTO


Il giunto idrodinamico è una trasmissione idrocinetica. Infatti le due giranti si comportano esattamente come una pompa centrifuga e una turbina idraulica. Quando alla pompa del giunto viene fornita una forza motrice (generalmente elettrica o Diesel) una certa energia cinetica viene impressa all'olio contenuto nel giunto, che, per forza centrifuga si muove verso l'esterno del circuito, attraversando con andamento centripeto la turbina. Questa assorbe così l'energia cinetica generando una coppia, pari sempre a quella di entrata, che tende a far girare l'albero di uscita.

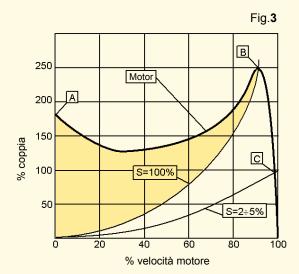
Non essendoci alcun collegamento meccanico tra le due giranti, non vi è praticamente usura. Il rendimento è influenzato solamente dalla differenza di velocità (scorrimento) tra pompa e turbina. Lo scorrimento è essenziale agli effetti del funzionamento del giunto: non ci sarebbe trasmissione di coppia senza scorrimento! La formula che lo esprime, e che indica anche la perdita di potenza del giunto, è la seguente:

Slip % =
$$\frac{\text{input speed - output speed}}{\text{input speed}} \times 100$$

In condizioni di carico normale, lo scorrimento può variare dall'1,5% (grosse potenze) al 6% (piccole potenze).

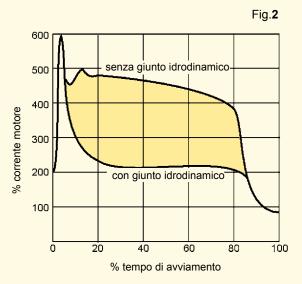

- I giunti idrodinamici TRANSFLUID seguono le leggi di tutte le macchine centrifughe:
- la coppia trasmessa è proporzionale al quadrato della velocità in entrata
- 2 la potenza trasmessa è proporzionale al cubo della velocità in entrata e alla quinta potenza del diametro esterno della girante.

- 1 GIRANTE INTERNA
- 2 GIRANTE ESTERNA
- 3 COPERCHIO
- 4 GIUNTO ELASTICO


2.1 Giunto idrodinamico Transfluid accoppiato a motore elettrico

I motori asincroni trifase (con rotore a gabbia di scoiattolo) forniscono la coppia massima vicino alla velocità di regime. Il sistema diretto di avviamento è il più usato. La figura 1 illustra il rapporto tra coppia e corrente. Come si può notare la corrente assorbita è proporzionale alla coppia solo tra l'85% e 100% della velocità di regime.

L'utilizzo di un giunto idrodinamico Transfluid permette al motore di partire praticamente senza carico. La figura 2 paragona l'assorbimento di corrente con un carico direttamente collegato al motore elettrico e con un giunto idrodinamico installato tra motore e carico. L'area colorata mostra l'energia persa in calore durante un avviamento senza il giunto idrodinamico. L'uso di un giunto idrodinamico Transfluid riduce i picchi di corrente assorbiti dal motore entro limiti accettabili. La coppia disponibile per accelerare il carico è maggiore di quella di un sistema che non include un giunto idrodinamico.

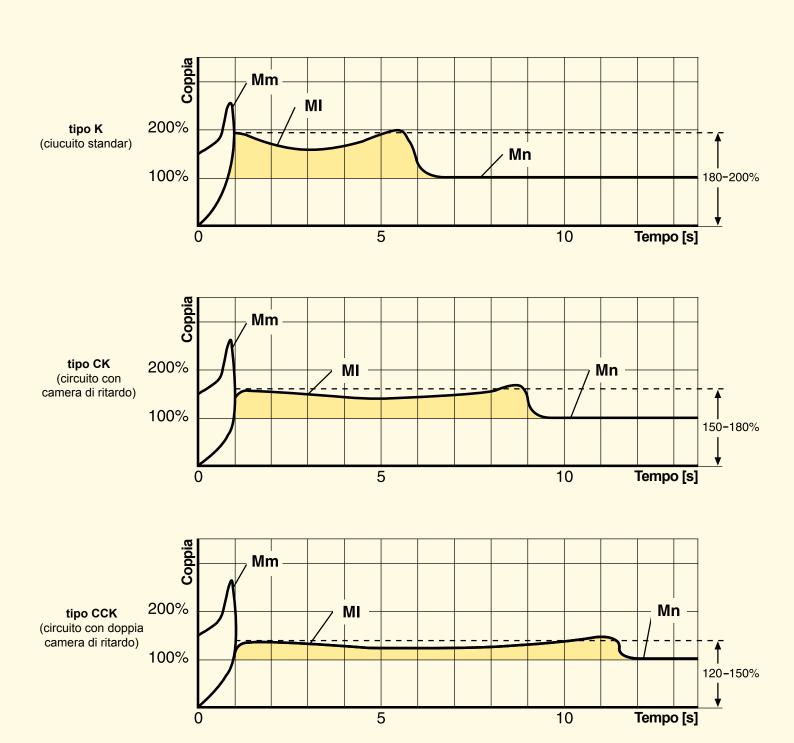

Questo non riduce solo gli sprechi di corrente, ma allunga anche la vita del motore elettrico.

Con un motore accoppiato direttamente al carico, gli svantaggi sono:

- la differenza tra coppia disponibile e quella richiesta dal carico è molto bassa finché il rotore ha accelerato tra 80 - 85% della velocità di regime.
- La corrente assorbita in avviamento è fino a 6 volte quella nominale causando un aumento della temperatura del motore, sovraccarichi sulle linee elettriche e, nel caso di avviamenti frequenti, aumento dei costi di produzione.
- Sovradimensionamento dei motori a causa delle limitazioni sopra citate.

Allo scopo di limitare l'assorbimento di corrente del motore durante la fase di avviamento del carico, l'avviamento stella-triangolo (Δ) è usato frequentemente riducendo la corrente assorbita a circa 1/3 durante l'avviamento. Sfortunatamente con questo sistema la coppia disponibile, durante la fase di commutazione, è ridotta a 1/3 e questo è un problema per le macchine con grandi inerzie da accelerare, poiché è ancora necessario sovradimensionare il motore elettrico. Inoltre questo tipo di avviamento non elimina le punte di corrente originate che rimangono molto elevate nella fase di commutazione.

La figura 3 illustra due curve di avviamento di un giunto idrodinamico e la curva caratteristica di un motore elettrico. Dalla curva di stallo del giunto (scorrimento = 100%) e dalla curva di coppia del motore si evidenzia quanta coppia sia necessaria per accelerare il rotore del motore (area colorata). In un secondo circa, il rotore del motore accelera passando dal punto A al punto B. L'accelerazione del carico è comunque fatta gradualmente per mezzo del giunto idrodinamico, utilizzando il motore in condizioni ottimali, seguendo la parte della curva tra il punto B (100%) e il punto C (2%÷5%). Il punto C è il tipico punto operativo in condizioni di normale utilizzo.



2.2 CURVE CARATTERISTICHE

MI : coppia trasmessa dal giunto idrodinamico
Mm : coppia di avviamento del motore elettrico

Mn : coppia nominale a pieno carico

.... : coppia di accelerazione

NOTA: I tempi di avviamento sono solo indicativi

3. GIUNTI IDRODINAMICI TRANSFLUID CON CAMERA DI RITARDO

Sono caratterizzati da **bassa coppia d'avviamento** e, con il circuito standard in condizioni di massimo riempimento d'olio, consentono di **non superare il 200%** della coppia nominale del motore. E' possibile limitare ulteriormente la coppia di avviamento **fino al 160%** della nominale, diminuendo il riempimento d'olio; si ottiene però un aumento dello scorrimento e della temperatura di esercizio del giunto idrodinamico.

Il sistema tecnicamente più valido è di utilizzare giunti con camera di ritardo collegata al circuito di lavoro tramite valvole con ugelli calibrati, che dalla taglia 15CK sono regolabili dall'esterno.(Fig. 4h):

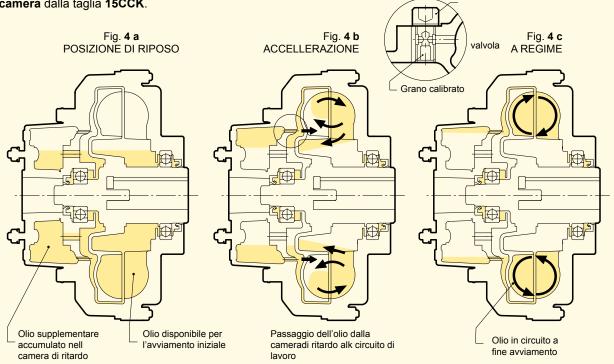
Con una semplice operazione, è quindi possibile variare il tempo di avviamento.

In posizione di riposo, la **camera di ritardo** contiene parte dell'olio di riempimento, riducendo così la quantità utile nel circuito di lavoro (Fig. **4a**): si ottiene pertanto l'effetto di avviare il carico con una riduzione di coppia, consentendo allo stesso tempo al motore di raggiungere più rapidamente la velocità di regime, come se partisse senza carico.

Durante l'avviamento, l'olio fluisce dalla camera di ritardo al circuito di lavoro (Fig. **4b**) in quantità proporzionale alla velocità di rotazione.

Appena il giunto idrodinamico raggiunge la velocità nominale, tutto l'olio fluisce nel circuito di lavoro (Fig. **4c**) e la coppia è trasmessa con **scorrimento minimo**.

Con la semplice camera di ritardo, il rapporto tra la coppia di avviamento e la nominale può arrivare fino al **150%**. Tale rapporto può essere ulteriormente ridotto fino al **120%** con la **doppia camera di ritardo**, che contiene al suo interno una maggiore quantità d'olio, da trasferire progressivamente nel circuito di lavoro durante la fase di avviamento.

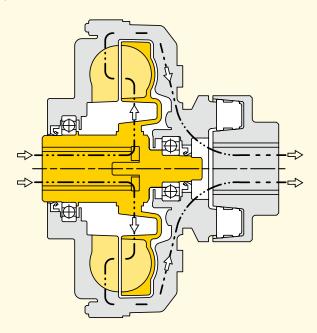

Essa è quindi adatta per avviamenti molto graduali con bassi assorbimenti di coppia all'avviamento, come tipicamente è richiesto su macchine con grossi momenti d'inerzia e per trasportatori a nastro.

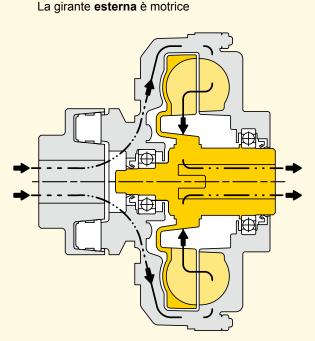
I vantaggi delle **camere di ritardo** diventano sempre più evidenti al crescere della potenza da trasmettere.

La camera semplice è disponibile dalla taglia 11CK, mentre la doppia camera dalla taglia 15CCK.

3.1 RIASSUNTO DEI VANTAGGI APPORTATI DAL GIUNTO IDRODINAMICO

- avviamenti molto graduali
- riduzione degli assorbimenti di corrente durante la fase di avviamento: il motore parte a basso carico
- protezione del motore e della macchina condotta da blocchi e sovraccarichi
- utilizzo di motori asincroni a gabbia di scoiattolo, invece di motori speciali con dispositivi di avviamento.
- maggior durata ed economia di funzionamento dell'intera catena cinematica, grazie al ruolo di protezione esplicato dal giunto idrodinamico
- contenimento dei consumi energetici, grazie alla riduzione delle punte di corrente
- coppia d'avviamento limitata fino al 120% nelle versioni con doppia camera di ritardo
- stessa coppia sia in ingresso sia in uscita: il motore può erogare la massima coppia anche a carico bloccato
- assorbimento delle vibrazioni torsionali caratteristiche dei motori a combustione interna, grazie alla presenza di fluido come elemento di trasmissione di potenza
- possibilità di effettuare un elevato numero di avviamenti, anche con inversione del senso di rotazione del moto
- bilanciamento del carico in caso di doppia motorizzazione: i giunti idrodinamici adeguano automaticamente le velocità del carico alla velocità di sincronismo
- elevata efficienza
- manutenzione minima
- tenute rotanti in Viton
- componenti in ghisa ed acciaio con trattamento anticorrosione


MONTAGGIO STANDARD O ROVESCIATO


4. INSTALLAZIONE

4.1 MONTAGGIO STANDARD

La girante interna è motrice

4.2 MONTAGGIO INVERSO

Viene sommata la **minima inerzia possibile** al motore, esso quindi è libero di accelerare più rapidamente. Nella fase di avviamento, la parte esterna del giunto raggiunge gradualmente il regime di funzionamento. **Per tempi di avviamento molto lunghi, la capacità di smaltimento termico** è decisamente inferiore.

Se l'applicazione richiede un dispositivo di frenatura, è relativamente semplice ed economico installare un disco o fascia freno sul semigiunto di allineamento.

Per i rari casi in cui la macchina condotta non può essere ruotata manualmente, diventano difficoltose le operazioni di sostituzione e di controllo del livello dell'olio e dell'allineamento.

La camera di ritardo, per le versioni che la prevedono, è montata sulla parte condotta. La velocità di rotazione della camera di ritardo aumenta gradualmente durante l'avviamento e quindi, a parità di diametro degli ugelli di passaggio olio si ha un avviamento più lungo.

Qualora venga eccessivamente ridotta la quantità d'olio, potrebbe accadere che la coppia trasmissibile dal giunto sia inferiore alla coppia di spunto della macchina condotta. In questo caso, essendo la camera di ritardo ferma, parte dell'olio resta imprigionato nella stessa, col rischio di non poter effettuare l'avviamento.

Il dispositivo "Tappo fusibile a percussione" potrebbe non intervenire correttamente su quelle macchine dove, a seguito di anomalie di funzionamento, il lato condotto potrebbe bloccarsi istantaneamente o restare bloccato in fase di avviamento.

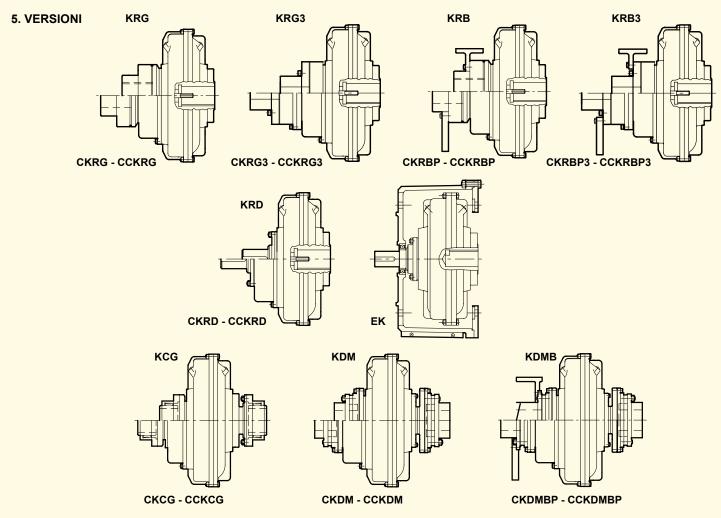
Il giunto di allineamento è protetto dalla presenza a monte del giunto idrodinamico, per cui questa configurazione risulta adatta per applicazioni con frequenti avviamenti o inversioni del senso di rotazione.

L'inerzia direttamente collegata al motore è più elevata.

La parte esterna, essendo direttamente collegata al motore, raggiunge istantaneamente la velocità di sincronismo. La **ventilazione** è quindi **massima** sin dall'istante iniziale.

Il montaggio di un disco o di una fascia freno sui giunti serie KR è più complesso e costoso ed implica un allungamento dell'ingombro assiale del gruppo.

La parte esterna è collegata al motore, ed è quindi possibile ruotare manualmente il giunto per eseguire la sostituzione ed il controllo del livello dell'olio e l'allineamento.


La camera di ritardo è montata sulla parte motrice, e raggiunge la velocità di sincronismo in pochi secondi. L'olio viene quindi, gradualmente e completamente, centrifugato nel circuito. La durata dell'avviamento è regolabile agendo sulle apposite valvoline o sugli ugelli di passaggio, e comunque **l'avviamento richiede tempi inferiori** rispetto alla configurazione con girante interna motrice.

Il funzionamento del tappo fusibile a percussione è sempre garantito, in quanto la girante esterna su cui è montato ruota sempre, essendo solidale con l'albero motore.

In caso di frequenti avviamenti o inversioni del senso di rotazione, il giunto di allineamento è maggiormente sollecitato.

In assenza di segnalazione specifica o evidente necessità applicativa, il giunto verrà fornito in configurazione adatta al nostro montaggio "standard". Segnalare quindi in sede di richiesta di offerta se si desidera il montaggio "rovesciato"

ATTENZIONE: A partire dalla taglia **13K** e **11CK** inclusa, sulla girante motrice viene installato di serie un anello deflettore, e non è quindi consigliabile utilizzare con montaggio "**rovesciato**" un giunto acquistato per montaggio "**standard**" e viceversa. In questi casi contattare TRANSFLUID per maggiori delucidazioni.

5.1 IN LINEA

: giunti base con giunti d'allineamento. KRG-CKRG-CCKRG

: come ...KRG, ma con puleggia freno (...KRB) o disco freno (...KRBP). KRB-CKRB-CCKRB

: giunto base ...KR con alberino. Consente l'utilizzo di altri giunti di allineamento; è possibile interporlo KRD-CKRD-CCKRD

(con apposita campana) tra motore e riduttore albero cavo.

: giunti base con giunto di allineamento che consente la rimozione dell'elemento di gomma senza KRG3-CKRG3-CCKRG3

rimuovere le macchine. : a tasselli, oppure superelastico. KRM-CKRM-CCKRM

: giunto completo di campana, da interporre tra motore elettrico flangiato e riduttore ad albero cavo. ΕK

: giunto base con semiguinti a denti, disponibile anche esecuzione con puleggia freno (...KCGB) o disco KCG-CKCG-CCKCG

freno (...KCGBP).

: giunto completo di semigiunti a dischi, disponibile anche con puleggia freno (...KDMB) KDM-CKDM-CCKDM

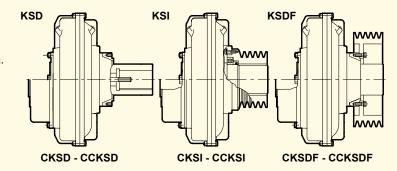
o disco freno (...KDMBP).

N.B.: Le versioni ...KCG - ...KDM consentono lo smontaggio radiale senza spostare il motore e la macchina condotta.

5.1 PULEGGIA

: giunti base predisposti per puleggia KSD-CKSD-CCKSD

flangiata, con camera di ritardo semplice (CK..) o doppia (CCK..).

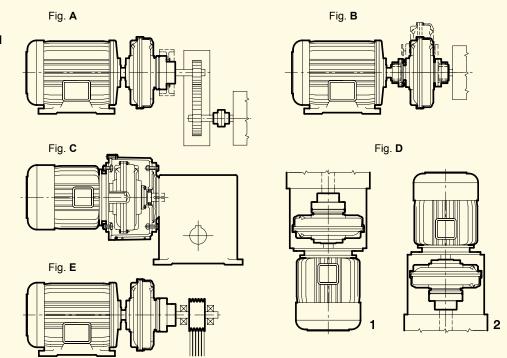

KSI-CKSI : giunto completo di puleggia incorporata.

La puleggia viene fissata dall'interno.

KSDF-CKSDF-CCKS...: giunto base ..KSD con puleggia

flangiata. La puleggia è fissata dall'esterno e può essere facilmente

sostituita



TRANSFULD industrial & marine

6 MONTAGGIO

6.1 ESEMPI DI MONTAGGIO VERSIONI IN LINEA

- Fig. **A** Ad asse orizzontale tra motore e macchina condotta (KRG-CKRG-CKRG e derivati).
- Fig. **B** Consente lo smontaggio radiale senza allontanare motore e macchina condotta (KCG-KDM e derivati).
- Fig. **C** Fig. C Tra motore elettrico flangiato e riduttore ad albero cavo tramite campana di sostegno (..KRD e EK).
- Fig. **D** ad asse verticale tra motore elettrico e riduttore o macchina condotta.
 - In sede d'ordinazione precisare tipo di montaggio 1 o 2.
- Fig. E Tra motore e puleggia supportata per potenze elevate e forti carichi radiali.

N.B. Versiond EK (fig. C) anche per montaggio verticale (fig. D 1-2)

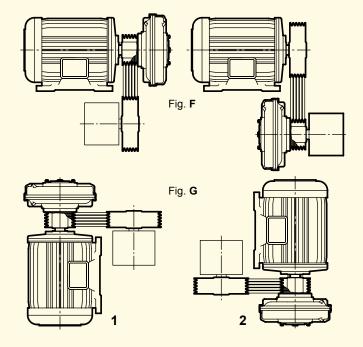
6.2 ESEMPI DI MONTAGGIO VERSIONI A PULEGGIA

Fig. F Ad asse orizzontale

Fig. G Ad adde verticale. In sede d'ordinazione precisare tipo di montaggio 1 o 2.

7 VERSIONI SPECIALI 7.1 ATEX

I giunti idrodinamici Transfluid sono disponibili, con fori finiti, certificati come equipaggiamento per uso in zone pericolose secondo la direttiva 2014/34/UE (Atex).


La selezione appropriata di giunti idrodinamici a norme Atex deve considerare un fattore di sicurezza addizionale di 1.2 volte la potenza assorbita (per esempio motore 132 kW @ 1500 giri/min - potenza assorbita 120 kW x 1.2 = 144 kW potenza da considerare nella selezione). A seconda delle differenti categorie di applicazioni, esiste un appropriato giunto idrodinamico selezionato come da tabella seguente:

Giunto idrodinamico modello	Category 3 £x II 3G Ex hIIC T4 Gc £x II 3D Ex hIIIC T125°C Dc	Category 2 Ex II 2G Ex hIIC T4 Gb Ex II 2D Ex hIIIC T125°C Db	Category 1 Ex I M2 Ex h I Mb
KRG	•	•	•
KCG	•	•	
KDM	•	•	•
KXG	•	•	
KXD	•	•	•
EK	•		
KBM	•	•	
KSD	•	• (acqua)	
fluido da utilizzare	Olio o acqua trattata	Olio resistente al fuoco o acqua trattata	Solo acqua trattata

In caso di richiesta per giunto idrodinamico Atex dovete fornire a Transfluid il modulo TF6413 debitamente compilato. Per quanto riguarda i giunti KXG e KXD, per favore consultare catalogo 160 I.

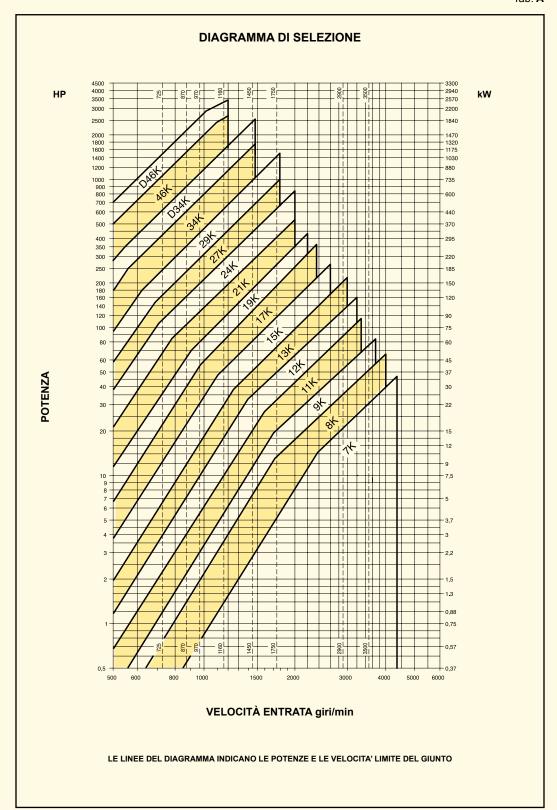
7.2 GIUNTI IDRODINAMICI RIEMPIMENTO AD ACQUA

TRANSFLUID ha sviluppato una versione di giunti idrodinamici con riempimento ad acqua al fine di soddisfare le richieste per particolari condizioni ambientali come giunti adatti a lavorare in zone pericolose e miniere.

L'acqua da utilizzare è una miscela di acqua e glicole. I giunti a riempimento ad acqua sono disponibili su richiesta per tutti i modelli dalla taglia 13 in su; essi hanno le stesse dimensioni di ingombro dei giunti della serie standard. Un suffisso "W" identifica il giunto adatto per operare acqua trattata (es. 27 CKRGW)

7.3 BASSA TEMPERATURA (inferiore a -20°C)

KDM - KCG - Cuscinetti speciali

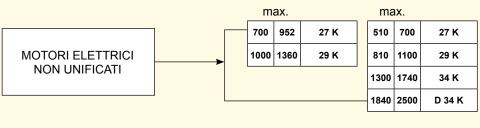

- Guarnizioni per fluido speciale

8 SELEZIONE

8.1 DIAGRAMMA DI SELEZIONE

Per una rapida selezione si può utilizzare il diagramma qui sotto riportato in funzione della potenza e della velocità in entrata. Qualora la selezione cada sulla linea che divide una grandezza dall'altra, è consigliabile scegliere la dimensione superiore effettuando un riempimento d'olio proporzionalmente ridotto.

Tab. A



8.2 TABELLA DI SELEZIONE

Giunti idrodinamici per motori elettrici unificati.

Tab. B

МОТ	ORE		3000	giri/min		1800 g	giri/min		1500 g	giri/min		1200 g	giri/min		1000 g	giri/min
TIPO	ALBERO DIA.	kW	HP	GIUNTO	kW	НР	GIUNTO	kW	HP	GIUNTO	kW	HP	GIUNTO	kW	HP	GIUNTO
80	19	0.75	1.5		0.55 0.75	0.75		0.55 0.75	0.75		0.37 0.55	0.5 0.75	7 K	0.37 0.55	0.5 0.75	7 K
908	24	1.5	2		1.1	1.5	7.1/	1.1	1.5	7 K	0.75	1	/ K	0.75	1	0.14
90L	24	2.2	3		1.5	2	7 K	1.5	2		1.1	1.5		1.1	1.5	8 K
100L	28	3	4	7 K	2.2	3 4		2.2	3		1.5	2	8 K	1.5	2	9 K
112M	28	4	5.5		4	5.5	8 K	4	5.5	8 K	2.2	3		2.2	3	
132	38	5.5 7.5	7.5 10		5.5	7.5	0 K	5.5	7.5	9 K	3	4	9 K	3	4	11 K
132M	38	7.5	10		7.5	10	9 K	7.5	10	9 K	4 5.5	5.5 7.5	11 K	4 5.5	5.5 7.5	
160M	42	11 15	15 20		11	15	3 K	11	15	11 K	7.5	10	12 K	7.5	10	12 K
160L	42	18.5	25	9 K	15	20	11 K	15	20	II K	11	15	12 K	11	15	13 K
180M	48	22	30		18.5	25	12 K (11 K)	18.5	25	12 K	-	-		-	-	•
180L	48	-	-	-	22	30	12 K	22	30	12 K	15	20	13 K	15	20	15 K
200L	55	30 37	40 50	11 K	30	40	13 K (12 K)	30	40	13 K	18.5 22	25 30		18.5 22	25 30	13 K
225S	60	-	-	-	37	50		37	50	13 K	-	-	15 K	-	-	-
225M	55(300) 60	45	60	11 K	45	60	13 K	45	60	15 K	30	40		30	40	17 K
250M	60 (3000) 65	55	75	13 K	55	75	15 K	55	75	15 K	37	50		37	50	40.14
280\$	65 (3000) 75	75	100		75	100	17 K (15 K)	75	100	47.14	45	60	17 K	45	60	19 K
280M	65 (3000) 75	90	125	13 K	90	125	4=15	90	125	17 K	55	75		55	75	24.14
315S	65 (3000) 80	110	150		110	150	17 K	110	150	19 K	75	100	19 K	75	100	21 K
315M	65 (3000) 80	132 160	180 220		132 160	180 220	19 K	132 160	180 220	21 K	90 110	125 150	21 K	90 110	125 150	24 K
2550	80 (3000)			-	200	270	21 K	200	270 340	211	132	180	24 1/	132	180	27 K
355S	100	200	270	-	260	340		250	340	24 K		220	24 K	160	220	21 N
355M	80 (3000) 100	250	340	-	315	430	24 K	315	430		200 250	270 340	27 K	200 250	270 340	29 K

ma	ax.	
440	598	29 K
800	1088	34 K
1250	1700	D 34 K
2000	2700	46 K
2500	3400	D 46 K

370	500	29 K
600	800	34 K
880	1200	D 34 K
1470	2000	46 K
2000	2700	D 46 K

NB: LA GRANDEZZA DEL GIUNTO IDRODINAMICO È VINCOLATA ALLE DIMENSIONI DELL'ALBERO MOTORE

8.3 CALCOLI DI VERIFICA

In caso di frequenti avviamenti/ora o di grosse masse da avviare, é necessario effettuare preliminarmente i seguenti calcoli di verifica. Per fare ciò, occorre conoscere:

- potenza in entrata kW	kW
- velocità in entrata	giri/min
- potenza assorbita del carico in fase di lavoro	kW
- velocità del carico	giri/min
- inerzia del carico	kgm²
- temperatura ambiente	°C
	 velocità in entrata potenza assorbita del carico in fase di lavoro velocità del carico inerzia del carico

Il primo dimensionamento verrà fatto utilizzando sempre il diagramma di Tab. A in funzione della potenza e della velocità di entrata. Quindi occorre verificare:

- A) tempo di avviamento
- B) temperatura max raggiungibile
- C) numero di cicli orari max.

A) Calcolo del tempo di avviamento ta :

$$t_a = \frac{n_u \cdot J_r}{9.55 \cdot M_a}$$
 (sec) dove:

n_{II} = velocità in uscita al giunto idrodinamico (giri/min)

= inerzia del carico rapportato all'asse di uscita del giunto idrodinamico (kgm2)

Ma = coppia d'accelerazione (Nm)

$$n_{U} = n_{M} \cdot \left(\frac{100 - S}{100}\right)$$

dove S è la percentuale di scorrimento rilevabile dalle curve caratteristiche del giunto in funzione della coppia assorbita M_I.

In caso di mancanza del valore S, utilizzare il valore:

- 4 per grandezze fino al 13"
- 3 per grandezze dal 15" al 19"
- 2 per grandezze superiori.

$$J_{\Gamma} = J \cdot \left(\frac{n_{L}}{n_{U}} \right)^{2}$$

Ricordiamo che:
$$J = \frac{PD^2}{4}$$
 or $\frac{GD^2}{4}$

$$M_a = 1.65 M_m - M_L$$

dove: $M_m = \frac{9550 \cdot P_m}{N_m}$ (coppia nominale)

$$M_L = \frac{9550 \cdot P_L}{N_U}$$
 (coppia assorbita dal carico)

B) Temperatura max raggiungibile

Per comodità di calcolo nel verificare l'aumento di temperatura del giunto alla fine dell'avviamento, non si tiene conto del calore smaltito per ventilazione in fase di avviamento:

$$T_a = \frac{Q}{C}$$
 (°C)

Q = calore generato nella fase di avviamento (kcal)

C = capacità termica totale (metallo + olio) che si rileva dalla Tab. C (kcal/°C).

$$Q = \frac{n_U}{10^4} \cdot \left(\frac{J_r \cdot n_U}{76.5} + \frac{M_L \cdot t_a}{8}\right) \text{ (kcal)}$$

La temperatura finale di un giunto alla fine del ciclo di avviamento

$$T_f = T + T_a + T_L$$
 (°C)

dove: T_f = temperatura finale (°C)

T = temperatura ambiente (°C)

T_a = aumento temperatura in fase di avviamento (°C)
T_L = aumento temperatura in fase di lavoro (°C)

$$T_L = 2.4 \cdot \frac{P_L \cdot S}{\kappa}$$
 (°C)

dove: K = fcoefficiente ricavabile dalla Tab. D Tf = non deve superare i 150°C

C) Numero di cicli max orari H

Al calore generato dallo scorrimento in fase di lavoro, occorre aggiungere il calore generato durante la fase d'avviamento. Per dare tempo a questo calore di essere dissipato, non si deve superare un certo numero di avviamenti per ora.

Ciò lo si deduce da:

$$H \max = \frac{3600}{t_a + t_1}$$

dove t_I = tempo di lavoro minimo

$$t_L = 10^3 \cdot \frac{Q}{\left(\frac{t_a}{2} + T_L\right) \cdot K}$$
 (sec)

8.4 ESEMPIO DI CALCOLO

Supponendo:
$$Pm = 20 \text{ kW}$$
 $nm = 1450 \text{ giri/min}$ $n_L = 700 \text{ giri/min}$ $n_L = 700 \text{ giri/min}$ $n_L = 25 \text{ °C}$

Trasmissione con cinghia.

Dal diagramma di selezione Tab. A, il giunto selezionato è il 12K.

A) Calcolo del tempo di avviamento

Dalla curva Tf 5078-X (fornita su richiesta) lo scorrimento S= 4%

$$n_u = 1450 \cdot \left(\frac{100 - 4}{100}\right) = 1392 \text{ giri/min}$$

$$J_{\Gamma} = 350 \cdot \left(\frac{700}{1392}\right)^2 = 88.5 \text{ kgm}^2$$

$$M_{\rm m} = \frac{9550 \cdot 20}{1450} = 131 \, \rm Nm$$

$$M_L = \frac{9550 \cdot 12}{1392} = 82 \text{ Nm}$$

$$M_a = 1,65 \cdot 131 - 82 = 134 \text{ Nm}$$

$$t_a = \frac{1392 \cdot 88.5}{9.55 \cdot 134} = 96 \text{ sec}$$

B) Calcolo temperatura finale

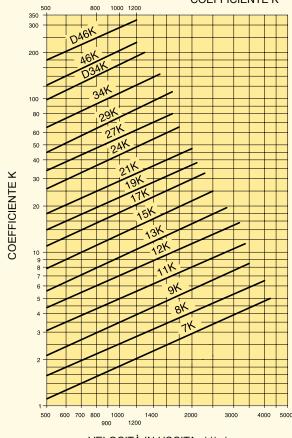
$$Q = \frac{1392}{10^4} \cdot \left(\frac{88.5 \cdot 1392}{76.5} + \frac{82 \cdot 96}{8} \right) = 361 \text{ kcal}$$

$$T_a = \frac{361}{42} = 86 \,^{\circ}\text{C}$$

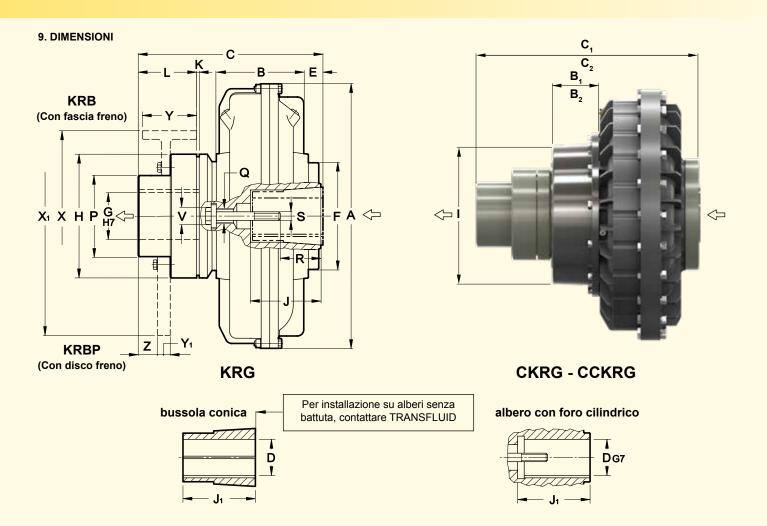
$$T_L = 2.4 \cdot \frac{12 \cdot 4}{8.9} = 13 \,^{\circ}C$$

$$T_f = 25 + 86 + 13 = 124 \, ^{\circ}C$$

C) Calcolo cicli orari max


$$t_L = 10^3 \cdot \frac{361}{\left(\frac{86}{2} + 13\right) \cdot 8.9} = 724 \text{ sec}$$

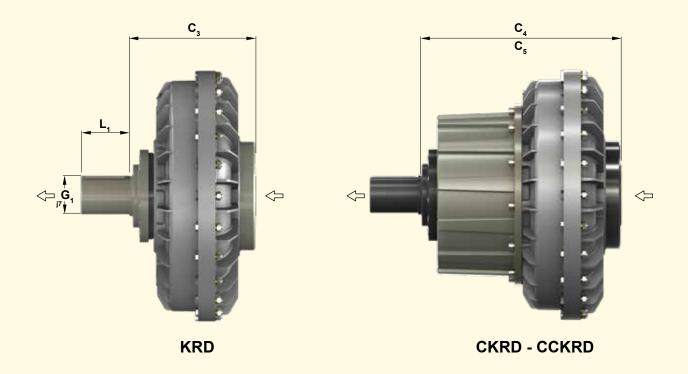
H =
$$\frac{3600}{96 + 724}$$
 = 4 avviamenti/ora


Tab. **C** CAPACITÀ TERMICA

gı	andezza			
•	Ŋ	K kcal/°C	CK kcal/°C	CCK kcal/°C
	7	1.2		
	8	1.5	-	
	9	2.5		
	11	3.2	3.7	-
	12	4.2	5	
	13	6	6.8	
	15	9	10	10.3
	17	12.8	14.6	15.8
	19	15.4	17.3	19.4
	21	21.8	25.4	27.5
	24	29	32	33.8
	27	43	50	53.9
	29	56	63	66.6
	34	92	99	101
	D34	138	-	-
	46	-	-	175
	D46	332	-	-

Tab. **D** COEFFICIENTE K

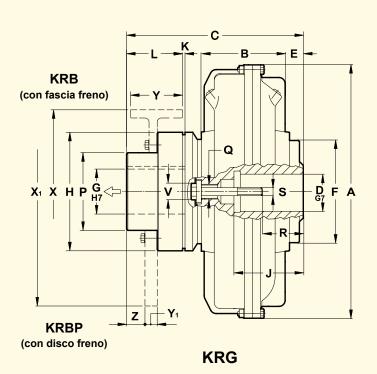
VELOCITÀ IN USCITA giri/min

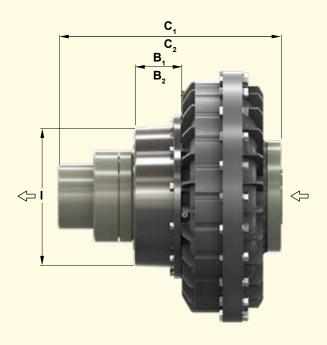

Grandez	$\Sigma \Rightarrow$	Dime	ensic	oni																														
9	I)	J	J	1	Α	B KR	B ₁ CKR	B ₂ CCKR	C KRG	C ₁	C ₂	Е	F	G max	Н	I	K	L	Р	Q	R	S	٧	Z	Giunto allineam	Fascia freno X - Y	Disco Freno X ₁ - Y ₁	(sei	eso kg nza oli CKRG	o) cckrg	n KRG	Oil nax (I) CKRG	CCKRG
7	19 2	24 8		40 60		228	77			189			22			440						27 35 40	M6 M8			DT 10	400 00		8.3			0.92		
8	_	!4 !8	69	50 60		256	91	-		194	-		18	114	42	110	-		60	70	M12	36 41	M8 M10	21		BI 10	160 - 60		8.7	-		1.5	-	
9	28 42•••	38 48••		60 80	80 110	295	96			246			31	128				2				79	M10 M12 M16	1	-			on request	16			1.95		
11	28 42•••	38 48••	111	60 80	80 110	325	107	68.5	-	255	301	-	27		55	132	195		80	85	M20	42 56 83	M10 M12 M16	27		BT 20	160 - 60 200 - 75		18	20.5	-	2.75	3.35	-
12	28 42•••	38 48••		60 80	80 110	372	122	75		255	322		24	145			224		00			42 56 83	M10 M12 M16						21.5	24.5		4.1	4.8	
13	42 55•••	48 60•••	143	11 110		398	137	/5		285	345		28	177		170				100		84 74 104	M16 M20	24		BT 30	200 - 75 250 - 95	400 - 30 450 - 30	34	37		5.2	5.8	
15	48 60	55 65•••	145	11 14		460	151	87	137	343	411	461	35	206			259		110	120		80 70 100	M16 M20 M20	34	35	BT40	250 - 95 315 - 118	400 - 30 450 - 30	50.3	54.3	62	7.65	8.6	9.3
17	48 60	55 65•••	145	11 14		520	170						37					3			M27	103	M16 M20						77	83	92	11.7	13.6	14.9
40	75• 48	55	145	140	0	505	400	96	176	362	442	522		225	90	250	337		110	135			M16 M20	34	15	BT 50	315 - 118 400 - 150	445 - 30 450 - 30		00		110	10.5	10.5
19	75•	65••• 80•	-	14 140		565	190						17									103 103 133	M20						83	90	99	14.2	16.5	18.5

DIMENSIONI NON IMPEGNATIVE

- FORI D RELATIVI A BUSSOLA CONICA CON CAVA PER CHIAVETTA ISO 773 DIN6885/1 CASI PARTICOLARI:
- FORO CILINDRICO STANDARD SENZA BUSSOLA CONICA CON CAVA PER CHIAVETTA ISO 773- DIN6885/1
- •• FORO CILINDRICO SENZA BUSSOLA CONICA, CON CAVA PER CHIAVETTA RIBASSATA (DIN6885/2)
- ••• BUSSOLA CONICA CON FORO SENZA CAVA PER CHIAVETTA
- NELL'ORDINAZIONE INDICARE: GRANDEZZA SERIE DIAMETRO D PER ...KRB ...KRBP SPECIFICARE X E Y O X1 E Y1 ESEMPIO: 9KRB - D38 - FASCIA FRENO = 160X60

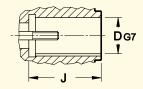
za





NB: Le frecce <> indicano l'entrata e l'uscita del moto nella versione standard.

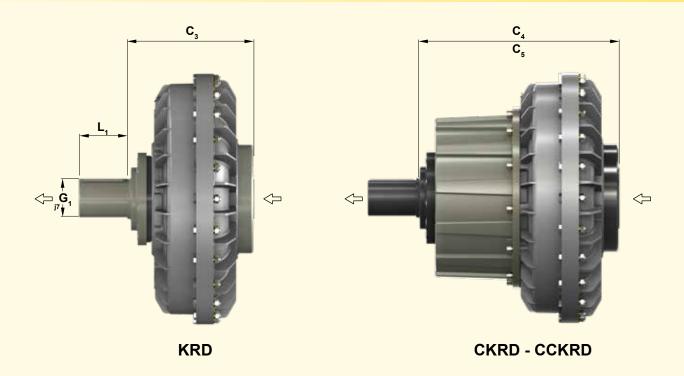
ezze	$\Sigma \Rightarrow$	Dime	nsion	i				
Grandezze	_	C ₄	C ₅	G₁	L,	(se	eso I nza d CKRD	_
7	138			28	40	5.7		
8	138	-		20	40	6.1	-	
9	176			38		11.6		
11	195	231		42	50	13	15.5	
12	185	252		44		16.7	19.7	
13	212	272		48	60	26.3	29.3	
15	230	298	348	60	80	40.4	44.4	52.1
17	236	343	423	75	100	58.1	64.1	73.1
19	230	545	723	,,,	100	65.1	71.1	80.1


- NELL'ORDINAZIONE INDICARE GRANDEZZA SERIE DIAMETRO D
- A RICHESTA FORO G FINITO; ALBERO G1 SPECIALE
- ALBERO G1 CON CAVA PER CHIAVETTA SECONDO ISO 773 DIN 6885/1

CKRG - CCKRG

albero con foro cilindrico

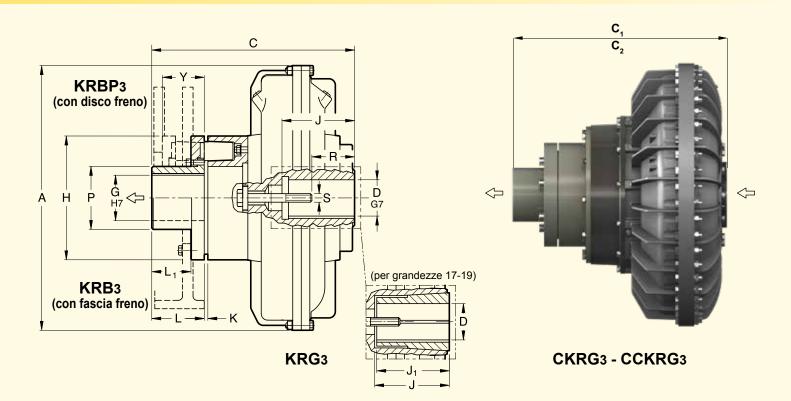
NB: Le frecce indicano l'entrata e l'uscita del moto nella versione standard.


2		\Rightarrow	Dime	ensio	ni																												
	5	C)	J	A	B KR	B, CKR	B ₂	C KR	C ₁	C ₂	E	F	G	н	ı	K	L	Р	Q	R	s	v		Giunto allineam	Fascia freno X - Y	Disco freno X ₁ - Y ₁	(se	esp k nza o CKRG	lio)	r	Olio nax I CKRG	
2	4	•80	90	170	620	205			433	533	623	45									130	M20 M24					560 - 30	120	120	147	19	23	31
_	'	••1	100	210	020	203		199	468	568	658	80	250	110	200	400	3	140	170	M36	165	M24	40	15	BT60	400 - 150	630 - 30	129	139	147	19	25	
2	,	•80	90	170	714	229		199	433	533	623	21	230	110	230	400	3	140	170	IVISO	130	M20 M24] 40	43	1000	500 - 190		147	157	165	40	31.2	20
_	•	••1	100	210	7 14	229			468	568	658	56								165	M24					795 - 30	147	137	100	40	31.2	39	
2	7	120	max	210 max	780	278			484	602	702	15	315	120	354		4	150	200		167 (per	M24 foro max)	-	20	DTON	500 - 190	710 - 30	228	246	265	42	50	61
2	9	135	max	240 max	860	295	131	231	513	631	731	18	350		354	537	4	150 200	M45	167 (per	M24 foro max)	-	20	БТОО	500 - 190	795 - 30	281	299	309	55	63	73	
3	4	150	max	265 max	1000	368			638	749	849	19	400	140	395		5	170	220			M36 foro max)	-	18	BT90	630 - 236	1000 - 30	472	482	496	82.5	92.5	101

- FORO D CON CAVA PER CHIAVETTA ISO 773 DIN6885/1
- FORO CILINDRICO STANDARD CON CAVA PER CHIAVETTA ISO 773 DIN6885/1
- •• FORO CILINDRICO STANDARD CON CAVA PER CHIAVETTA RIBASSATA (DIN6885/2)
- NELL'ORDINAZIONE INDICARE: GRANDEZZA SERIE DIAMETRO D PER KRB O ...KRBP, SPECIFICARE X E Y O X1 E Y1, DIMENSIONE FASCIA O DISCO FRENO
- A RICHIESTA FORO G FINITO

szza

ESEMPIO: 19KRBP - D80 - DISCO FRENO 450X30

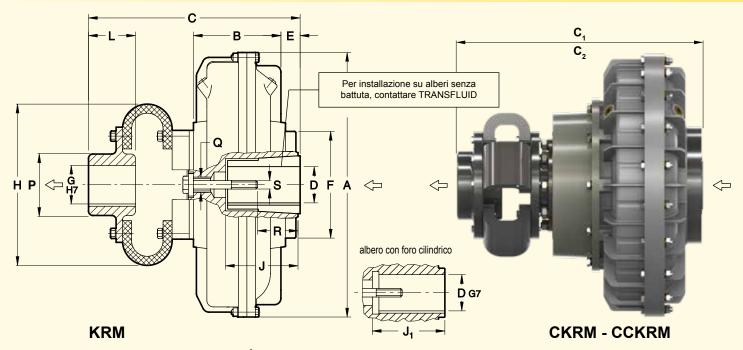


NB: Le frecce <i indicano l'entrata e l'uscita del moto nella versione standard.

ezza	<u>∑</u> ⇒ D	imensio	oni					
⟨∺⊴ Grandezza	C ₃ KRD	C ₄	C ₅	G ₁	L,	(se	Peso k enza o ICKRD	lio)
	292	392	482					
21	327*	427*	517*	90	120	99.5	109.5	117.5
24	292	392	482	90	120	117.5	127.5	135.5
	327*	427*	517*			117.5	127.5	100.0
27	333	451	551	100	140	178	186	215
29	362	480	580	100	140	231	249	259
34	437	568	668	140	150	358	373	383

Lunghezza totale con D100 A RICHIESTA FORO $\mathbf{G_1}$ ALBERO SPECIALE

Il giunto di allineamento in 3 pezzi B3T, consente la sostituzione degli elementi elastici (gommini), senza muovere il motore elettrico; solamente con il giunto ..KRB3 (con fascia freno) il motore elettrico deve essere rimosso della quota 'Y'.
'Y' = spostamento assiale parte maschio del giunto B3T per effettuare la sostituzione degli elementi elastici.


ıdezza	$\Sigma \Rightarrow$	Dimen	sioni																				
⟨⊱⊴ Grandez	M		J	J₁	A	С	C ₁	C ₂	G	н	K	L	L ₁	Р	F	2		6	Y	Giunto elastico	(s KRG3	Peso ko enza ol CKRG3	g io) ∣CCKRG₃
	48	55	145	110											8	0	M16	M20					
17	60	65•••	145	140	520										10	03	М	20			84	90	99
	75●	80●	-	140 - 170		440	400	F70	90	240	2	110	00	120	103	132	IVI	20	82	DOT FO			
	48	55	145	110		418	498	578	90	240	3	110	82	130	8	0	M16	M20	02	B3T-50			
19	60	65•••	143	140	565										10	03	М	20			91	97	106
	75●	80●	-	140 - 170											103	132	IVI	20					

- FORI 'D' RELATIVI A BUSSOLE CONICHE CON CAVA PER LINGUETTA ISO773 DIN 6885/1
- FORI CILINDRICI STANDARD SENZA BUSSOLA CONICA CON CAVA PER LINGUETTA ISO773-DIN 6885/1
- ••• BUSSOLA CONICA SENZA CAVA PER LINGUETTA

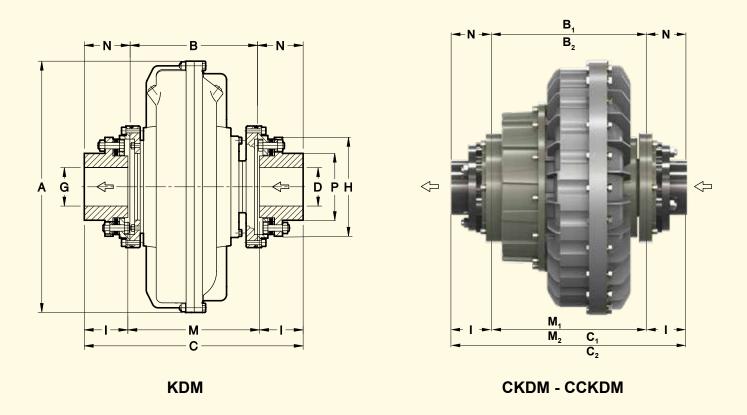
21	80●	90	170		620	457	557	647							130	M20	M24			124	111	152
21	100	••	210		620	492	592	682	110	290	3	140	78	150	165	M2	24	82	B3T-60	134	144	152
24	80●	90	170		714	457	557	647	110	290	3	140	70	130	130	M20	M24	02	D31-00	152	162	170
24	100	••	210		/ 14	492	592	682							165	M2	24			132	102	170
27	120 r	max	210	-	780	566	684	784	130	254	4	150	110	180	167	M2	24	120	B3T-80	247	265	284
29	135 r	max	240		860	595	713	813	130	354	4	150	112	160	per for	o max		120	B31-60	300	318	328
34	150 r	max	265		1000	704	815	915	150	395	5	170	119	205	200 per for	M30	6	151	B3T-90	505	481	491
46	180 r	max	320	-	1330	-	-	1092	180	490	7	195	138	270	190 per for	M30 o max	6	122	B3T-100	-	-	1102

- FORI 'D' CILINDRICI SENZA BUSSOLA CONICA CON CAVA PER LINGUETTA ISO773 DIN 6885/1•
- DIMENSIONI STANDARD
- •• DIMENSIONI STANDARD CON CAVA PER LINGUETTA RIBASSATA (DIN 6885/2)
- NELL'ORDINAZIONE SPECIFICARE: DIMENSIONE, MODELLO, DIAMETRO D ESEMPIO: 21CCKRG3- D80

NB: Le frecce indicano l'entrata e l'uscita del moto nella versione standard.

GIUNTO CHE PERMETTE MAGGIORI DISALLINEAMENTI E LA SOSTITUZIONE DEGLI ELEMENTI ELASTICI SENZA RIMUOVERE LE MACCHINE

dezza	$\Sigma \Rightarrow \rangle$	Dimen	sioni						VERS	IONE	AD AL	BERO	PER E	BUSS	OLA	CONI	CA								
⟨≒⊴ Grandezz)	J	J	J ₁	Α	В	C KRM	C ₁	C ₂	E	F	G	Н	L	Р	Q	F	2	;	3	Giunto elastico	(se	eso ke nza ol CKRM	
	28	38		60	80													43	54	M10	M12				
9	42•••	-		80	-	295	96	276	-		31	400						7	9	М	16		14.5	-	
11	28	38	111	60	80	205	407		224		27	128	50	405		00	1400	42	56	M10	M12	50.5	40.5	19	
11	42•••	48••	1111	80	110	325	107	285	331		21		50	185	50	80	M20	8	3	М	16	53 F	16.5	19	
12	3	8		8	80	372	122	200	352	-	24	145						42	56	М	12		20	23	-
12	42•••	48••		80	110	3/2	122		332		24	145						8	3		16		20	23	
13	42	48	143	11	10	398	137	332	392		28	177	75	228	72	105		8	4	IVI	10	55 F	33	36	
13	55•••	60•••	143	110	58.5	390	137	332	392		20	177	75	220	12	103		74	104	М	20	331	- 33	30	
15	48	55	145	1	10	460	151	367	435	485	35	206	80	235	80	112		80	70	M16	M20	56 F	48	52	59.7
13	60	65•••	173	14	40	+00	101	307	733	+00		200		200	-00	112		10	00	М	20	301		52	33.7
	48	55	145	11	10												M27	8	0	M16	M20				
17	60	65•••	173	14	40	520	170				37						IVIZI	10)3	_ N	20		67	73	82
	75•	80•	-	140	170			380	460	540		225	75	288	90	120		105	135	171		58 F			
	48	55	145	1	10			000	+50	5-70		223	, 5	200	50	120		8	0	M16	M20	551			
19	60	65•••	1-70	14	40	565	190				17							10)3	М	20		74	80	89
	75•	80•	-	140	170													105	135	М	20				

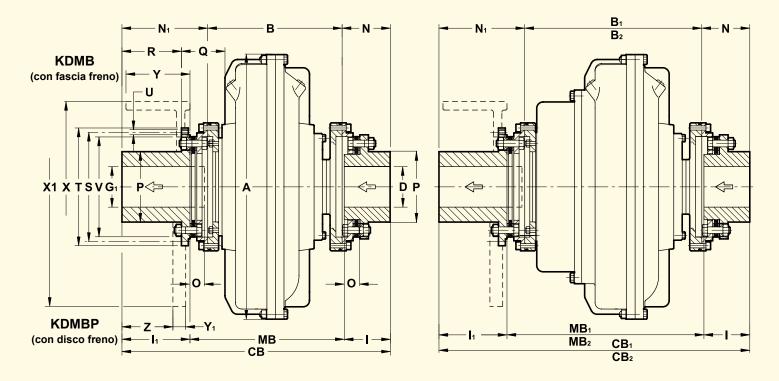

- FORI D RELATIVI A BUSSOLA CONICA CON CAVA PER CHIAVETTA ISO 773 DIN6885/1CASI PARTICOLARI: FORO CILINDRICO STANDARD SENZA BUSSOLA CONICA CON CAVA PER CHIAVETTA ISO 773 DIN6885/1 FORO CILINDRICO STANDARD SENZA BUSSOLA CONICA CON CAVA PER CHIAVETTA RIBASSATA (DIN6885/2)

- ••• BUSSOLA CONICA CON FORO SENZA CAVA PER CHIAVETTA

VERSIONE AD ALBERO CON FORO CILINFRICO

21	80•	90		170	620	205	496	596	686	45							130	M20	M24		124	134	142
21	100)••		210	620	205	531	631	721	80	250	90	378	110	111	M36	165	M	24	65 F	124	134	142
24	80•	90		170	715	229	496	596	686	21	250	90	3/6	110	144	IVISO	130	M20	M24	00 F	142	152	160
24	100	••(210	/ 13	229	531	631	721	56							165	M	24		142	152	100
27	120 ו	max	-	210	780	278	525	643	743	15	315	100	462	122	160		167 (per for		24)	66 F	211	229	248
29	135 ו	max		240	860	295	577	659	795	18	350	120	530	145	192	M45	167 (per for	M o max		68 F	293	311	321
34	150 ו	max		265	1000	368	648	779	879	19	400	140	630	165	224		200 (per for	M: o max		610 F	467	462	492

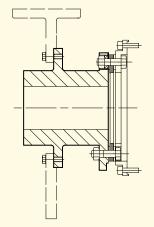
- FORI D CON CAVA PER CHIAVETTA ISO 773 DIN6885/1
- FORO CILINDRICO STANDARD CON CAVA PER CHIAVETTA ISO 773- DIN6885/1
- FORO CILINDRICO STANDARD CON CAVA PER CHIAVETTA RIBASSATA (DIN6885/2)
- NELL'ORDINAZIONE INDICARE: GRANDEZZA SERIE DIAMETRO D ESEMPIO: 13CKRM-D 55


NB: Le frecce <- indicano l'entrata e l'uscita del moto nella versione standard.

GIUNTO COMPLETO DI SEMIGIUNTI ELASTICI A DISCHI, SENZA MANUTENZIONE E INDICATI PER PARTICOLARI CONDIZIONI TERMICHE E AMBIENTALI.SMONTABILE RADIALMENTE SENZA RIMUOVERE LE MACCHINE.

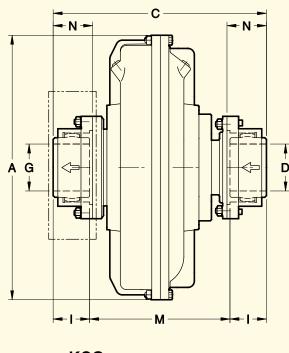
dezza	∑⇒ □	Dimensi	oni																	
📇 Grandezza	A	B KDM	B ₁	B ₂	C KDM	C ₁	C ₂	D G min	D G max	Н	ı	M KDM	M ₁	M ₂	N	Р	Giunto a dischi size	KDM (s	Peso kg senza oli CKDM	
11	325	186	232		289	335		16	55	123	50	189	235		51.5	76	1055	22.5	25	
12	372	100	253	-	209	356	-	10	33	123	30	109	256	-	31.3	88	1000	26	29] -
13	398	216	276]	339	399]	21	65	147	60	219	279		61.5	1	1065	41.3	44.3	1
15	460	246	314	364	391	459	509	21	75	166	70	251	319	369	72.5	88 104	1075	65	69	76.7
17	520	269	040	400	444	504	604	31	90	400	0.5	074	054	404	07.5	400	4005	89	95	104
19	565	269	349	429	444	524	604	31	90	192	85	274	354	434	87.5	122	1085	96	102	111
21	620	045	445	505	540	040	700	44	445	044	440	200	400	540	440.5	454	4440	159	169	177
24	714	315	415	505	540	640	730	41	115	244	110	320	420	510	112.5	154	1110	177	187	195
27	780		476	576	644	762	862	E4	105	202	140	364	482	582	140	100	1110	289	307	326
29	860	387	505	605	673	791	891	51	135	303	140	393	511	611	143	196	1140	342	360	370
34	1000	442	573	673	768	899	999	61	165	340	160	448	579	679	163	228	1160	556	562	572

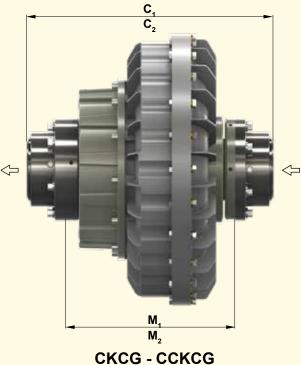
NELL'ORDINAZIONE INDICARE: GRANDEZZA - SERIE
 A RICHIESTA FORI D-G FINITI ESEMPIO: 27 CKDM



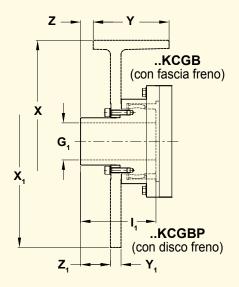
NB: Le frecce indicano l'entrata e l'uscita del moto nella versione standard.

SOLO PER 27-29 SONO DISPONIBILI MOZZI PER FASCIA FRENO/DISCO CON FLANGIA CENTRALE


za



	Grandezza	∑⇒ Dim	ensioni			
	G Gran	Fascia freno X - Y	Disco freno X ₁ - Y ₁	(senz	eso k a olio,f e disco CKD	ascia
	12	200 - 75	a richiesta	27	30	
	13	200 - 75	a ricillesta	42.5	45.8	_
	15	250 - 95	450 - 30	69.3	73.3	81
	17	315 - 118	500 - 30	99	105	114
	19	400 - 150	560 - 30	105	112	125
	21	400 - 150	630 - 30	179	189	197
	24	500 - 190	710 - 30	197	207	215
l	27	500 - 190	800 - 30	317	335	354
	29	300 - 190	500 - 50	370	388	398
	34	on request	800 - 30 1000 - 30	599	587	597

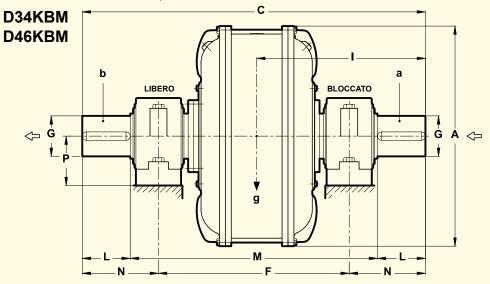

dezz	$\Sigma \Rightarrow$	Dime	ensior	ni																								
∑ Grandezz	А	В	В1	B ₂	СВ	CB ₁	CB ₂	D	G ₁	ı	ı	1	МВ	MB ₁	MB ₂	N	N ₁	О	Р	Q	R	s	т	ι	J	v	z	Giunti a
Ä		KDM	CKDM	CCKDM	KD	CKD	CCKDM	max	max		std	max	KD	CKD	CCKDM		St					÷0.1	f7	Nr.	Ø			dischi
12	372	186	253		336.5	403.5		55	60	50	8	0	206.5	273.5		51.5	99	17.5	76	67	69	128	142	8	M8	114		1055
13	398	216	276	-	440.5	500.5	- 1	65	65	60	140	170	240.5	300.5	-	61.5	163	21.5	88	78	129	155	170		IVIO	140	-	1065
15	460	246	314	364	495.5	563.5	613.5	75	80	70	150	170	275.5	343.5	393.5	72.5	177	24.5	104	98	134	175	192			157	109	1075
17	520		0.40	400	- 40 -		700 5		0.5	0.5		0.10	000.5		400.5		400		400	107	4.40				M10	405	440	1005
19	565	269	349	429	548.5	628.5	708.5	90	95	85	400	210	303.5	383.5	463.5	87.5	192	29.5	122	87	143	204	224			185	118	1085
21	620	045	445	505	000.5	700.5	040.5	445	400	440	160		250.5	450.5	540.5	440.5	004	20.5	454	133	407	050	070	12	1440	004	440	4440
24	714	315	415	505	628.5	728.5	818.5	115	120	110			358.5	458.5	548.5	112.5	201	38.5	154	109	137	256	276		M12	234	112	1110
27	780	358	476	576	731.5	849.5	949.5	405	445	440		240	411.5	529.5	629.5	440	000 5	47.5	400	107	455	045	000			000	400	4440
29	860	387	505	605	760.5	878.5	978.5	135	145	140	180		440.5	558.5	658.5	143	230.5	47.5	196	109	155	315	338		M14	286	133	1140
34	1000	442	573	673	845.5	976.5	1076.5	165	175	160			505.5	636.5	736.5	163	240.5	57.5	228	124	152	356	382		M16	325	130	1160

- NELL'ORDINAZIONE INDICARE: GRANDEZZA SERIE
- A RICHIESTA FORI D E G1 FINITI E QUOTA I1 SPECIALE
- PER FASCIA FRENO O DISCO FRENO PRECISARE QUOTE X E Y O X1 E Y1 ESEMPIO: 17KDMB - FASCIA FRENO 400 x 150

KCG

Fascia o disco freno a richiesta

NB: Le frecce <i indicano l'entrata e l'uscita del moto nella versione standard.

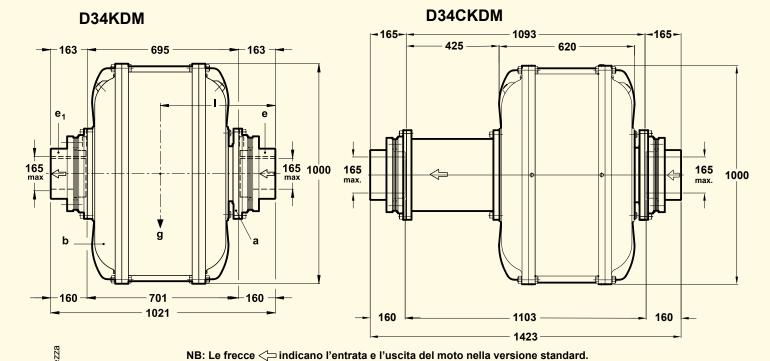

GIUNTO COMPLETO DI SEMIGIUNTI A DENTI SMONTABILE RADIALMENTE SENZA RIMUOVERE LE MACCHINE

dezza	$\Sigma \Rightarrow$	Dime	ensior	ni																
⟨∺⊴ Grandezza	Α	C	C ₁	C ₂	G	G ₁		I ₁	M	M ₁	M ₂	N	fascia freno X - Y	z	disco freno	Z ₁	Giunti a denti Dim	(Se	eso k	lio)
_			CNCG	CUNUG	max	max				CKCG	CCRCG		V-1		X ₁ - Y ₁			KCG	CKGC	CCKCG
7	228	229			50	_	43	80	143			44.5					1" E.I.	11.3		
8	256	234	-						148	-			_	_	_		(5) (6)	11.7	-	
9	295	290.6							190.6									22.9		
11	325	299.6	345.6	-	65	45	50	114	199.6	245.6	-	50.8	250-95	45	400-30	32	1" ½ E.I.	24.9	27.4	-
12	372	299.6	366.6		65	45	50	114	199.6	266.6		50.8	250-95	45	400-30	32	(5) (6)	28.5	31.4	
13	398	325.1	385.6						225.1	285.1								37.6	40.6	
15	460	410	478	528					258	326	376		050.05		400.00		2" ½	76.6	80.6	88.3
17	520	434	514	594	95	65	76	146	282	362	442	79.5	250-95 315-118	57.5 21.5	400-30 445-30	44.5	E.I.	91.1	97.1	106.1
19	565	434	514	594					202	302	442		313-116	21.5	445-50		(5) (6)	98.1	104.1	113.1
21	620	503	603	693	444	90	90	165	323	423	513	93.5	315-118	26	560-30	38	3" E.I.	142.3	152.3	160.3
24	714	503	603	693	111	90	90	100	323	423	513	93.5	400-150	15	710-30	38	(5) (6)	160.3	170.3	178.3
27	780	627	754	845	124	110	105	170	417	535	635	109.5	500-190	6	795-30	30	3" ½ E.I.	253.2	272.2	291.2
29	860	656	774	874	134	110	105	170	446	564	664	109.5	500-190	0	795-30	30	(5) (6)	307.2	325.2	335.2
34	1000	750	881	981	160	120	120	190	510	641	741	123.5	•	•	800-30	42	4" E.I. (5) (6)	492.4	507.4	517.4
46	1330	-	-	1313.4	244	175	190	280	-	-	933.4	192.5	•	•	•	•	6" E.I. (5) (6)	-	-	1333

- SU RICHIESTA
- (5) E.I. = VITI ESPOSTE IN POLLICE
- (6) GIUNTO A DENTI CON VITI CALIBRATE SPECIALI
- NELL'ORDINAZIONE INDICARE: GRANDEZZA SERIE ESEMPIO: 21CKCG

VERSIONE A DOPPIO CIRCUITO, GIUNTO DOTATO DI SUPPORTI ED ALBERI D'INGRESSO E D'USCITA

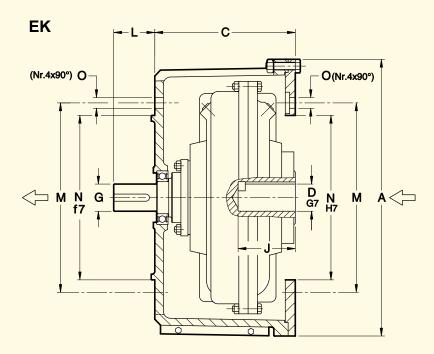
SERIE	A	С	F	D-G m6	L	М	N	Р
D34KBM	1000	1400	855	140	140	1120	257.5	170
D46KBM	1330	1900	1275	160	200	1550	312.5	170


PESO kg (Senza olio)	Olio max. I	CENTRO D g Kg	OI GRAVITÀ I mm	MOMENTO J (WR2 a	
810	162	952	710	26.19	64.25
2200	390	2514	955	91.25	183.7

CHIAVETTE SECONDO ISO 773 - DIN6885/1

VERSIONI A DOPPIO CIRCUITO, SMONTABILI RAPIDAMENTE SENZA RIMUOVERE LE MACCHINE.

CON SEMIGIUNTI A DISCHI, SENZA MANUTENZIONE

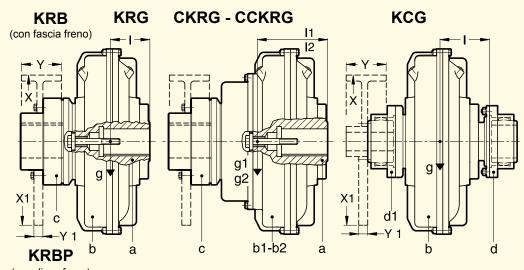

CON SEMIGIUNTI A DISCHI

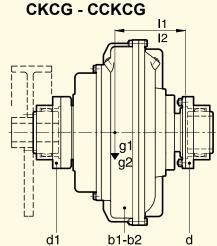

☆ Grandezza ∑⇒ Dimensioni MOMENTO DI INERZIA CENTRO DI GRAVITÀ PESO kg OLIO J (WR2) Kgm² (senza olio) max. I mm ka D34KDM 880 162 1022 512 26.08 65.53 0.955 0.955 D34CKDM 194.5 26.08 67.99 0.955 0.955 1014 194.5 532

Disponibile anche D46KCG. Per informazioni contattare Transfluid

- g = PESO TOTALE INCLUSO OLIO (RIEMP. MASSIMO)
- a = ELEMENTO INTERNO
- b = ELEMENTO ESTERNO
- d = SEMIGIUNTI FLESSIBILI (ELEMENTO INTERNO)
- d₁ = SEMIGIUNTI FLESSIBILI (ELEMENTO ESTERNO)

Esempio di applicazione




NB: Le frecce <= indicano l'entrata e l'uscita del moto nella versione standard.

Grandezza	∑;;> [Dimens	sioni										
.	D	J	O	L	A	С	М	N	0	Peso kg (senza olio)	OLIO max I	Motori d TIPO	elettrici kW 1500 rpm
7	• 24	52	24	38	269	132	165	130	11	11.4	0.92	90S - 90L **90LL	1.1 -1.5 1.6
8	• 28	62	28 h7	44	299	142	215	180	13	12.2	1.5	100 L 112 M	2.2 -3 4
9	• 38	82	38	57	399	187	265	230	13	26.9	1.95	132S - 132M ** 132L	5.5 - 7.5 9.2
11	• 42	112	42	63	399	187	300	250	17	28.3	2.75	160M -160 L	11 - 15
12	•• 48	112	48 j7	65	485	214	300	250	17	66	4.1	180 M 180 L	18.5 22
13	• 55	112	55	80	+00	214	350	300	17	76	5.2	200 L	30

- FORO CILINDRICO STANDARD CON CAVA PER CHIAVETTA ISO 773- DIN6885/1
- •• FORO CILINDRICO STANDARD CON CAVA PER CHIAVETTA RIBASSATA (DIN 6685/2)
- ** NON UNIFICATO
 NELL'ORDINAZIONE INDICARE: GRANDEZZA SERIE DIAMETRO **D** e **G**ESEMPIO: 8 EK-D28 G 28

CENTRO DI GRAVITÀ E MOMENTO D'INERZIA

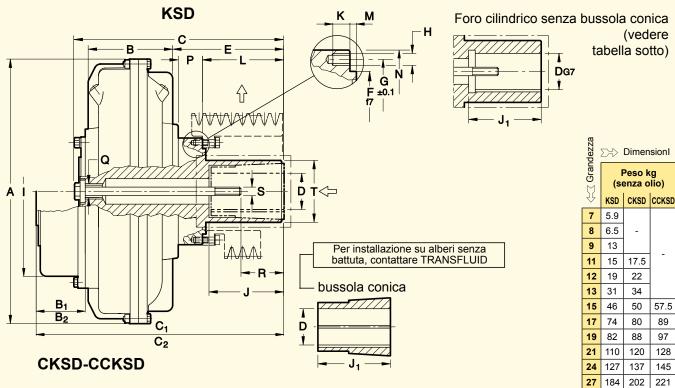
(con alsco treno)				
KDM _	CI	KDM-CCKDM	11 12	
e1 X	g e	g1 e1		e

	Grandezza	∑≒> Dim	nensior	ni				
	Gran	Con fa	MOME				ZIA lisco f	rono
	\forall	X - Y	kgm²				kgm²	Peso kg
	13-15	250 -95	0.143	11.9	400		0.587	27
	13-15	315 -118	0.379	20.1	450		0.944	34.9
		315 -118	0.378	19.8	450		0.941	34.2
	17-19				500		1.438	43
		400 -150	1.156	37.5	560		2.266	54.7
		400 - 150	1 201	39.9	560		2.255	52.7
	21-24	400 - 150	1.201	39.9	630		3.623	68.1
	21-24	500 - 190	3 033	64 1	710	-	5.856	88
		300 - 190	3.033	04.1	795		9.217	111.6
					710		5.840	86
	27-29	500 - 190	3.022	62.8	795		9.200	109.6
					800		9.434	111.1
	34	630 - 236	10 026	132.6	800		9.418	109.6
	34	030 - 230	10.020	132.0	1000		23.070	176.2

Grandez	$\Sigma \Rightarrow$	Dime	nsioni															
ā								CENT			AVITÀ							
	KF	RG	CK	RG	CCH		K	CG	CK	CG	CCF	CG	K	M	CK	DM	CCK	(DM
Ä	g kg	l mm	g₁ kg	I ₁ mm	g₂ kg	I ₂ mm	g kg	l mm	g₁ kg	I ₁ mm	g ₂ kg	I ₂ mm	g kg	l mm	g₁ kg	I ₁ mm	g₂ kg	I ₂ mm
7	9.1	92					12.1	70										
8	10	93	-	-			13	73	-	-			_	_	-	-		
9	17.7	134					24.6	86					22.2	81				
11	20.4	136	23.4	151] -	-	27.3	93	30.2	107] -	-	24.9	85	27.9	98	-	-
12	25.1	142	28.7	154			32.1	98	35.6	113			29.6	92	33.2	104		
13	38.5	157	42	176			42.2	104	45.7	115			45.8	101	49.3	109		
15	57	174	61.8	195	70.2	216	77.3	124	82.1	135	90.4	147	71.7	121.5	76.6	130	85.7	145
17	87.2	205	94.8	225	106.5	238	85.3	138	103.1	152	126.6	185	99.2	135	106.9	145	118.3	163
19	96.4	201	104.4	221	116	227	104.6	136	112.6	152	136	182	106.4	133	116.4	145	127.4	161
21	145.6	233	159	265	169.3	288	151.2	157	164.5	174	200.2	211	175.6	156	189	168	201	182
24	172	227	184	255	195.3	280	177.2	157	190.2	170	225.2	201	202	150	214.3	166	226	178
27	265	262	290	298	313	312	276.2	185	304.2	210	361.2	248	326	164	351	174	378	195
29	329	277	354	305	368	321	344.2	198	359.2	218	415.2	251	383	176	411	188	432	200
34	521	333	549	364	580	376	548.9	235	571.9	253	582.9	282	628	209	636	214	650	222
46			-		1294	485			-		1524	368			-			

		MON (IENIO	UI INEI		•	K l	DM
а	b	b ₁	b ₂	С	d	d ₁	е	e ₁
0.006	0.019			0.004	0.004	0.004		
0.012	0.034			0.004	0.004	0.004	-	-
0.020	0.068	-						
0.039	0.109		-	0.011	0.017	0.016	0.014	0.014
0.072	0.189	0.217			0.017	0.016		
0.122	0.307	0.359		0.032			0.032	0.036
0.236	0.591	0.601	0.887	0.082	0.091	0.102	0.063	0.064
0.465	1.025	1.281	1.372	0.192	0.091	0.102	0.121	0.125
0.770	1.533	1.788	1.879	0.192	0.091	0.102	0.121	0.123
1.244	2.407	2.997	3.181	0.370	0.145	0.375	0.210	0.373
2.546	4.646	5.236	5.420	0.370	0.143	0.373	0.210	0.373
3.278	7.353	9.410	10.37	1.350	0.500	0.436	0.934	0.887
4.750	11.070	13.126	13.754	1.330	0.300	0.430	0.834	0.007
11.950	27.299	29.356	29.983	3.185	0.798	1.649	1.565	2.773
52.2		•	106.6	6.68	4.35	7.14		•

g g1 g2 = PESO TOTALE COMPRESO OLIO (MAX RIEMPIMENTO)


^{*} Per **KSD** (senza puleggia) = a + b

^{*} Per CKSD (senza puleggia) = a + b1

^{*} Per **CCKSD** (senza puleggia) = a + b2

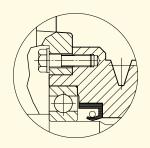
⁼ ELEMENTO INTERNO b = ELEMENTO ESTERNO + COPERCHIO = b + CAMERA DI RITARDO b2 = b + DOPPIA CAMERA DI RITARDO

de = SEMIGIUNTI FLESSIBILE (ELEMENTO INTERNO)
d1 e1 = SEMIGIUNTI FLESSIBILI (ELEMENTO ESTERNO)
ESEMPIO: J..CCKCG = a+d (ELEM. INT.) b2+d1 (ELEM. EST.)

NB: Le frecce <= indicano l'entrata e l'uscita del moto nella versio	sione standard.
--	-----------------

Grandezza	S Dimensioni VERSIONE AD ALBERO PER BUSSOLA CONICA																											
	ı	D	J	J	1	Α	В	B ₁	B ₂	С	C ₁	C ₂	Е	F	G	ŀ	1	ı	K	L	М	N	Р	Q	R		s	Т
Ŋ							KSD	CKSD	CCKSD	max	CKSD	CCKSD				Nr.	Ø											max
7	19	24		40	50	228	77			159			55							35					29 38	3 r	M6 M8	
	2	28	69	6	0	220	- ' '			174			70	75	90	4	M6		8	50	3	114	14	M12	43		M10	50
8	2	24	09	5	0	256	91	_		194			81	75			IVIO	_		65				""	33		M8	
	2	28		6	0	230	31			134			01												43		M10	
9	28	38		60	80	295	96			250			116												39 6	1 N	И10 M12	
	•••	•42	111	8	0	200			_					96	114					85	5	128	20		78		M16	69
11	28	38		60	80	325	107	73.5		259	289.5		113			8		195						M20	38 59) N	/10 M12	
	•••	•42		8	0	02-								M8	M8		13						78		M16			
12	38	42	113	80	110	372	122			274	327		125	112	130					98	7	145	22		54 83	3 N	M12 M16	80
	•••	•48		11	10			80										224							83		M16	
13	42	48	144	11	10	398	137			367	407		190	135	155					158	6	177	29		76	\perp	M16	88
	•••55	•••60		110	58.5	000																			76 10	-	M20	
15	48	55	145	11		460	151	92	142	390	438	488	195	150	178			264	17	159		206	28		80 70) N	И16 M20	100
	60	•••65		14	40																				100	\perp	M20	
	48	55	145	1	10											12								M27	69	4		
17	60	•••65			40	520	170						245				M10				7		60		99	_		
	•75	•80	-	140	170			101	181	455	516	596		180	200			337	17	180		225			99 13	9	M20	132
	48	55	145		10																				69	4		
19	60	•••65		<u> </u>	40	565	190						225										45		99	4		
	•75	•80	-	140	170																				99 13	9		

- FORI D RELATIVI A BUSSOLA CONICA CON CAVA PER CHIAVETTA ISO 773- DIN6885/1 CASI PARTICOLARI:
- FORO CILINDRICO STANDARD SENZA BUSSOLA CONICA ISO 773 DIN6885/1 BUSSOLA CONICA CON FORO SENZA CAVA PER CHIAVETTA

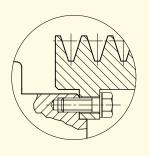

								VE	ERSIO	NE A	D ALE	BERO	CON	FORC	CILII	NDRIC	0								
21	•80		170	620	205			505	580	670	260							190			57		135	M20	
21	•100		210	020	205	115	205	545	620	710	300	200	228		M14	400	23	230	_	250	57	M36	165	M24	145
24	•80	-	170	714	229	1115	205	505	580	670	236	200	220	°	IVI 14	400	23	190	′	250	M46	IVISO	135	M20	145
24	•100		210	/ 14	229			545	620	710	276							230			IVI40		165	M24	
27	120 max		210	780	278	138								С	ONSU	LTARE	INOS	TRI TE	CNICI						

- FORO CILINDRICO STANDARD CON CAVA PER CHIAVETTA ISO 773- DIN6885/1 NELL'ORDINAZIONE INDICARE: GRANDEZZA SERIE DIAMETRO D
- ESEMPIO: 12KSD D 42

KSI - CKSI - CCKSI

...KSI

∑⇒ Dimensioni Grandezza Puleggia integrata U D Dp N° tipo 80 90 100 7 2 - SPA/A 80 26.5 28 90 100 19 - 24 28 90 26.5 3 - SPA/A 8 100 112 5 - SPA/A 10 28 - 38 125 4 - SPB/B 15 38 - 42 48 140 5 - SPB/B 12


GOLA	٧	z
SPZ/Z	12	8
SPA/A	15	10
SPB/B	19	12.5
SPC/C	25.5	17
D	37	24
3 V	10.3	8.7
5 V	17.5	12.7
8 V	28.6	19

KSDF - CKSDF

V
Z

D
D
P

...KSDF

zza	∑≒> Dim	ensio	ni	
رہٰ≺ Grandezza	D	U		uleggia angiata
			Dp	N° tipo
7	19 - 24	6	125	
'	28	21	125	2 - SPA/A
8	19 - 24	36	125	
8	28	9	112	3 - SPA/A
9	28 - 38	34	160	4 - SPB/B
11	42	58	200	3 - SPB/B
	00 10	50	180	4 - SPB/B
12	38 - 42 48	51	200	3 - SPC/C
	40	26	200	4 - SPC/C
	42 - 48	12.5	180	6 - SPB/B
13	55 - 60	50 49	250	6 - SPB/B 5 - SPC/C
	40 55	12.5	200	6 - SPB/B
15	48 - 55 60 - 65	17	250	5 - SPC/C
	00 00	69	280	5 - SPB/B
		72.5	280	6 - SPB/B
17	67 - 75	85.5	310	6 - SPC/C
19	80	72.5	315	6 - SPB/B
		59	345	6 - SPC/C
21 24		a ricl	niesta	
27				

 NELL'ORDINAZIONE INDICARE: GRANDEZZA - SERIE - DIAMETRO D - Dp - NUMERO e TIPO GOLE ESEMPIO: 13CKSDF - D55 - PULEGGIA Dp. 250 - 5SPC/C/C

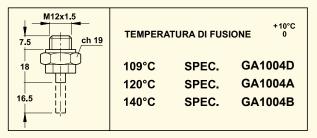
10. RIEMPIMENTO

I giunti idrodinamici Transfluid vengono forniti senza olio. I riempimenti standard sono: X per serie K, 2 per serie CK e 3 per serie CCK. Le quantità sono indicate alle pagine 13 e 15 del presente catalogo. Eseguire le procedure indicate nei manuali uso e manutenzione 150 I e 155 I che accompagnano ciascun giunto idrodinamico. Olio consigliato: ISO32 HM per funzionamento in condizioni normali. Per temperature sotto allo zero si consiglia ISO FD 10(SAE 5W) e per temperature inferiori a -20°C consultare i nostri tecnici.

11. DISPOSITIVI DI SICUREZZA TAPPO FUSIBILE

In caso di sovraccarico, ovvero quando lo scorrimento del giunto raggiunge valori elevati, la temperatura dell'olio aumenta eccessivamente, danneggiando così le tenute e provocando la fuoriuscita dell'olio.Per evitare danni, è consigliabile, in caso di applicazioni critiche, installare un tappo fusibile adeguato. Il giunto idrodinamico è fornito con tappo fusibile a 140°C (±5°) (a richiesta

TAPPO FUSIBILE A PERCUSSIONE

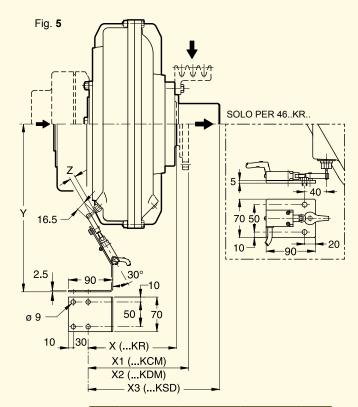

109°C, 120°C o 198°C).

La fuoriuscita d'olio può essere evitata installando un tappo fusibile a percussione. Qualora la temperatura raggiunga il punto di fusione dell'elemento fusibile, questo rilascia un'astina che va ad intercettare la camma di un relè, dando un segnale di allarme o togliendo corrente al motore. Come nel caso del tappo fusibile, esistono 2 diversi elementi di fusione (vedere pag. 27).

11.1 TAPPO FUSIBILE A PERCUSSIONE CON INTERRUTTORE

Il dispositivo comprende un tappo fusibile a percussione, montato sul tappo conico. Il tappo fusibile a percussione è composto da un tappo filettato e un'astina trattenuta da un anello fusibile, che fuoriesce per forza centrifuga al raggiungimento della temperatura di fusione prevista. Tale incremento di temperatura può essere dovuto a sovraccarico, bloccaggio della macchina condotta o insufficiente riempimento d'olio. L'astina, scorrendo per circa 16 mm, intercetta la camma dell'interruttore per azionare un segnale d'allarme o blocco motore. Dopo un eventuale intervento, e rimossa la causa che l'ha provocato, il dispositivo può essere facilmente ripristinato con la sostituzione del tappo fusibile a percussione o addirittura dell'anello fusibile, seguendo le istruzioni specifiche riportate nel manuale d'installazione. Con la girante esterna motrice, come indicato in Fig. 5, il tappo fusibile a percussione funziona in qualsiasi condizione; qualora la girante esterna è condotta, essa riesce ad attivarsi correttamente solo in caso di un aumento dello scorrimento dovuto a sovraccarico o a un insufficiente riempimento d'olio. È possibile installare questo sistema su tutti i giunti idrodinamici a partire dalla taglia 13K anche el caso in cui non sia stato inizialmente previsto, richiedendo un set comprendente: tappo fusibile a percussione, quarnizione, tappo conico modificato, contrappeso per bilanciatura, collante, interruttore con staffa di fissaggio e le istruzioni d'installazione. Per aumentare il grado di sicurezza del giunto idrodinamico, è sempre presente un tappo fusibile standard tarato ad una temperatura superiore a quella del tappo fusibile a percussione. Per un corretto funzionamento, consultare anche le norme relative al montaggio standard o rovesciato, riportate a pag. 6.

- L'alimentazione standard è 230 Vac
- Disponibile anche la versione ATEX
- Tappo fusibile a percussione



DISPOSITIVO ELETTRONICO PER CONTROLLO SOVRACCARICO (LIMITATORE DI COPPIA)

E' costituito da un rilevatore che misura la differenza di giri tra l'entrata e l'uscita del giunto, arrestando il motore o fornendo un segnale di allarme nel caso venga superato il limite prestabilito. Con tale dispositivo, così come col controllore ad infrarossi, non si rende necessario alcun intervento di riparazione o sostituzione successiva al sovraccarico, dato che, una volta rimossa la causa dell'inconveniente, la trasmissione del moto può continuare regolarmente (vedere pag. 28).

CONTROLLORE AD INFRAROSSI

Per il rilevamento della temperatura di lavoro, è disponibile un sistema dotato di sensore a raggi infrarossi, che adeguatamente posizionato in prossimità del giunto idrodinamico, permette una misurazione senza contatto ed estremamente precisa. La temperatura viene visualizzata da un apposito display che consente inoltre l'impostazione di 2 soglie di allarme gestibili dal cliente (vedere pag. 29).

DIM.	х	X ₁	X ₂	X ₃		Y	Z
7	115	128		148	24	262	
_ ′	113	120	-	163	28	202	
8	124	137		187		272	-
9	143	166.5	156	228		287.5	
11•••	150	173.5	163	236		300.5	
12	157	183.5	173	25	58	323	15
13	174	195.5	187	336		335	16
15	197	220	214	35	57	358	16
17	217	240	235	42	25	382	12
19	209	232	227	41	17	400.5	9
21	•257	282	277	••4	72	423	8
24	•257	282	277	••472		460	4
27	271.5	331	295			491	9
29	296.5	356	322	-		524	8
34	346	404	369			584	4

- Per Dia. 100 + 35 mm
- •• per Dia. 100 + 40 mm
- ••• Solo per K.. (CK.. a richiesta)

DIMENSIONI INDICATIVE

11.2 DISPOSITIVO ELETTRONICO PER CONTROLLO SOVRACCARICO (Fig. 6)

All'aumentare della coppia resistente nel giunto idrodinamico, si ha un incremento dello scorrimento e di conseguenza una diminuzione della velocità in uscita. Detta variazione di velocità è rilevabile tramite un sensore che invia un treno di impulsi al controllore di giri. Se la velocità di rotazione diminuisce rispetto alla soglia di velocità (vedere diagramma) impostata sul controllore, questa viene segnalata con l'intervento del relay interno. Il dispositivo ha un temporizzatore "TC" con un tempo di cecità iniziale (1 - 120 s) che evita l'intervento dell'allarme in fase di avviamento, e un temporizzatore "T" (1 -30 s) che ne ritarda la segnalazione causata da improvvise variazioni di coppia.

E' inoltre disponibile un'altra uscita analogica in tensione (0-10V), proporzionale alla velocità, da collegarsi ad un visualizzatore o ad un trasduttore di segnale $(4-20\ \text{mA})$. Alimentazione standard 230V ac, altre tensioni disponibili su richiesta: 115 V ac, 24 V ac o 24 V dc, da specificare in sede d'ordine.

Disponibile anche la versione Atex

PANNELLO DI CONTROLLO (Fig. 7)

(TC) Tempo di cecità iniziale

Regolazione a cacciavite fino a 120 s.

(DS) Regolazione gamma di velocità

DIP-SWITCH di programmazione a 5 posizioni, seleziona lo stato di relay, il tipo di proximity, il sistema di ripristino, l'accelerazione o la decelerazione. Il Dip-Switch di programmazione a 8 posizioni permette di scegliere la gamma più idonea al tipo di utilizzo.

(SP) Soglia di velocità (set point)

Regolazione a cacciavite numerata da 0 a 10. Il valore 10 corrisponde al fondo scala prescelto coi Dip-Switch..

R Reset

Riarmo manuale eseguibile localmente col pulsante R, oppure a distanza collegando un contatto N.A. ai pin 2-13.

SS Superamento della soglia

(LED ROSSO) Si accende ogni volta che viene superata la soglia impostata (set point).

(A) Led di allarme

(LED ROSSO) Si accende quando interviene l'allarme e il relé interno si commuta.

(E) Enable

(LED GIALLO) Si accende quando il dispositivo è abilitato.

T Tempo di ritardo

Regolazione a cacciavite fino a 30 s.

(ON) Aliementazione

(LED VERDE) Segnala che il dispositivo è alimentato.

PER ULTERIORI DETTAGLI RICHIEDERE TF 5800-A..

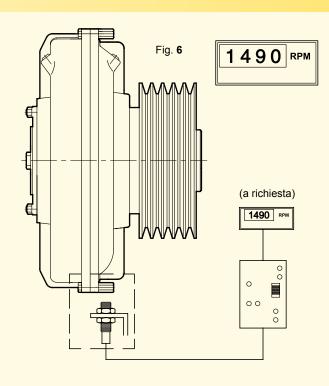
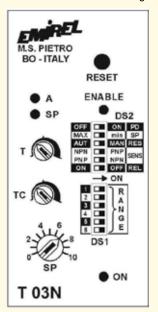
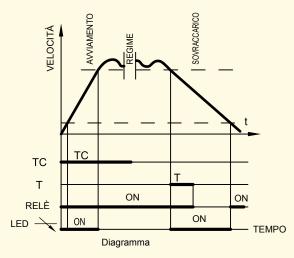
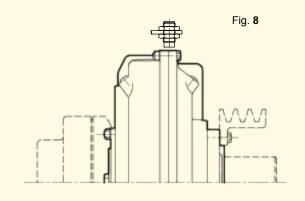
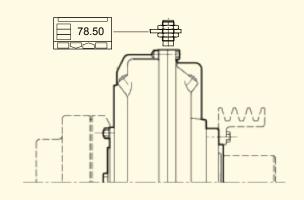
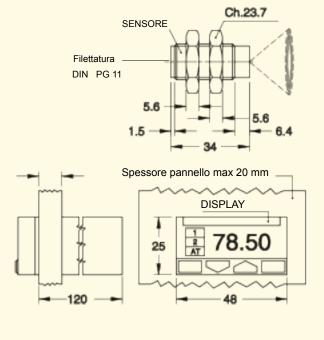




Fig. **7**




DISPOSITIVO DI SICUREZZA FUNZIONAMENTO


11.3 CONTROLLORE DI TEMPERATURA AD INFRAROSSI

Questo dispositivo è un sistema di controllo della temperatura del giunto idrodinamico, senza contatto. Ha due soglie regolabili con un allarme logico sulla prima, ed un allarme a relè sulla seconda. E' facile da installare ed affidabile. Il sensore dev'essere posizionato in prossimità della girante esterna o del coperchio del giunto idrodinamico, scegliendo una delle possibilità illustrate in Fig. 8. La distanza tra il sensore ed il giunto idrodinamico dev'essere di circa 15-20 mm (le alette di raffreddamento non disturbano il corretto funzionamento del sensore stesso). Per evitare che la superficie lucida del giunto idrodinamico crei riflessi che possano falsare una corretta lettura della temperatura, è necessario verniciare di nero opaco la superficie del giunto direttamente esposta al sensore (è sufficiente una fascia di 6-7 cm). Il cavo del sensore ha una lunghezza standard di 90 cm. In caso di necessità, può essere prolungato solo ed esclusivamente con cavo intrecciato e schermato per termocoppie tipo "K".

SENS	SORE
Campo di misura	0 ÷ 200 °C
temperatura ambiente	- 18 ÷ 70 °C
Risoluzione	0.0001 °C
Dimensioni	32.5 x 20 mm
Lunghezza del cavo standard •	0.9 m
Involucro	ABS
Grado di protezione	IP 65
CONTR	OLLORE
Alimentazione	85264 Vac / 4863 Hz
Uscita relè OP1	No (2A - 250 V)
Uscita logica OP2	Non isolata
(5Vdc, ±10%, 30 mA max)	
Allarme AL1 (visualizzatore)	Logic (OP2)
Allarme AL2 (visualizzatore))	Relè (OP1) (NO, 2A / 250Vac)
Grado di protezione morsetti	IP 20
Grado di protezione custosia	IP 30
Grado di protezione visualizzatore	IP 65
Dimensioni	1/32 DIN – 48x24x120 mm
Peso	100 gr

• PROLUNGABILE CON CAVO INTRECCIATO E SCHERMATO PER TERMOCOPPIE TIPO K (NON FORNITO)


GIUNTI IDRODINAMICI SERIE KSL

A riempimento variabile per variazione di velocità con regolazione elettronica. Potenze fino a 4000 kW

GIUNTI ELASTICI SERIE BM-B3M

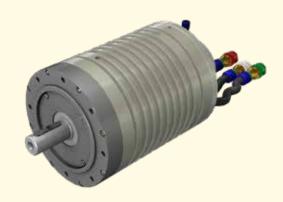
Per coppie fino a 33100 Nm

FRIZIONI A COMANDO PNEUMATICO SERIE TP

Con due, tre dischi per coppie fino a 33100 Nm

GIUNTI IDRODINAMICI SERIE KPT

A riempimento variabile per avviamento graduale e variazione di velocità. Potenze fino a 1700 kW


FRENI A DISCO E A CEPPI SERIE NBG/TFDS

Per coppie fino a 19000 Nm

MACCHINE ELETTRICHE MAGNETI PERMANENTI

Potenze fino a 100 kW

EUROPE

AUSTRIA ASC GMBH 4470 Enns

BELGIUM - LUXEMBURG

TRANSFLUID FRANCE s.a.r.l. 38110 Rochetoirin Ph. +33 9 75635310 Fax +33 4 26007959 tffrance@transfluid.eu

CZECH REPUBLIC

TESPO ENGINEERING s.r.o. 602 00 Brno

DENMARK (Electric appl.)

JENS S. TRANSMISSIONER A/S DK 2635 ISHØJ

MENGLAND & IRELAND

MARINE AND INDUSTRIAL TRANS. LTD. Queenborough Kent me11 5ee

FINLAND (Electric appl.) OY JENS S. AB

02271 Espoo

FINLAND (Diesel appl.)

TRANS-AUTO AB 151 48 Södertälje

FRANCE

TRANSFLUID FRANCE s.a.r.l. 38110 Rochetoirin Ph. +33 9 75635310

Fax +33 4 26007959 tffrance@transfluid.eu

HOLLAND

TRANSFLUID NORTH EUROPE 3992 AK HOUTEN (The Netherlands) Ph. +31 (0) 8554868530 Fax +49 5921 7288809 info@bellmarine.nl

NORWAY (Diesel appl.)

KGK Norge AS 0664 Oslo

POLAND

SENOMA LTD PL40-153 Katowice

PORTUGAL

REDVARIO LDA 2735-469 Cacem

RUSSIA - BELARUS - KAZAKHSTAN

TRANSFLUID 000 143100 Moscow Ph. +7 495 7782042 Mob. +7 926 8167357 tfrussia@transfluid.eu

SLOVENIA - BOSNIA - CROATIA **SERBIA**

VIA INTERNATIONAL d.o.o. 1241 Kamnik

TECNOTRANS BONFIGLIOLI S.A. 08040 Barcelona

SWEDEN - ESTONIA - LATVIA (Electric appl.)

JENS S. TRANSMISSIONER AB SE-601-19 Norrkoping

TURKEY REMAS 81700 Tuzla Istanbul **AMERICA**

ARGENTINA

ACOTEC S.A. Villa Adelina - Buenos Aires

CHILE

SCEM LTDA Santiago Do Chile

COLUMBIA

A.G.P. REPRESENTACIONES LTDA 77158 Bogotà

PERU'

SCEM LTDA SUC. PERU Lima 18

U.S.A. - CANADA - MEXICO

TRANSFLUID LLC Auburn, GA30011 Ph. +1 770 822 1777 Fax +1 770 822 1774 tfusa@transfluid.us

AFRICA

MAROCCO - MAURITANIA SENEGAL - TUNISIA

TRANSFLUID FRANCE s.a.r.l. 38110 Rochetoirin (France) Ph +33 9 75635310 Fax +33 4 26007959 tffrance@transfluid.eu

EGYPT

INTERN.FOR TRADING & AGENCY (ITACO) Nasr City (Cairo)

SOUTH AFRICA SUB SAHARAN COUNTRIES

BMG BEARING MAN GROUP Johannesburg

OCEANIA

NEW ZELAND

HENLEY ENGINEERING Ltd Auckland

ASIA

S ASIA South East

ATRAN TRANSMISSION PTE LTD Singapore 608 579

CHINA

TRANSFLUID BEIJING TRADE CO. LTD 101300 Beijing

Ph. +86 10 60442301-2 Fax +86 10 60442305 tbtcinfo@transfluid.cn

INDONESIA

PT. HIMALAYA EVEREST JAYA

Barat Jakarta 11710

IRAN

LEBON CO

Tehran 15166

IRAN (Oil & Gas appl.) **FVANPALA Inc.**

Tehran 1433643115

S ISRAEL

ELRAM ENGINEERING & ADVANCED TECHNOLOGIES 1992 LTD

Emek Hefer 38800

KOREA KIWON CORP.

Pusan - South Korea

TAIWAN

FAIR POWER TECHNOLOGIES CO.LTD

105 Taipei

THAILAND

SYSTEM CORP. LTD. Bangkok 10140

UAE - SAUDI ARABIA - KUWAIT - OMAN **BAHRAIN - YEMEN - QATAR** NICO INTERNATIONAL U.A.E.

A	TRANSF	LUID SI	JBSIDIARIE	S
----------	--------	---------	------------	---

REPRESENTATIVE OFFICE

SERVICE CENTER

Global web site: www.transfluid.eu

E-commerce web site: www.buy-transfluid.com

AGENTE DISTRIBUTORE		