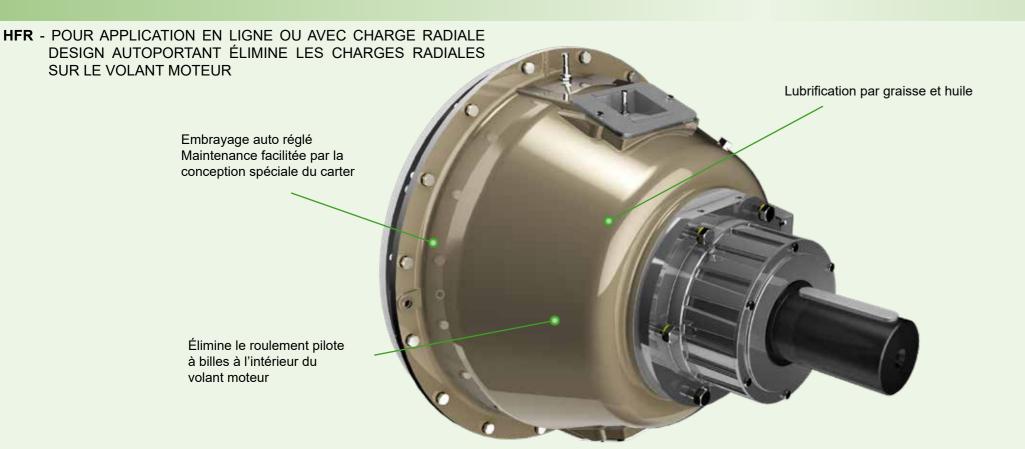
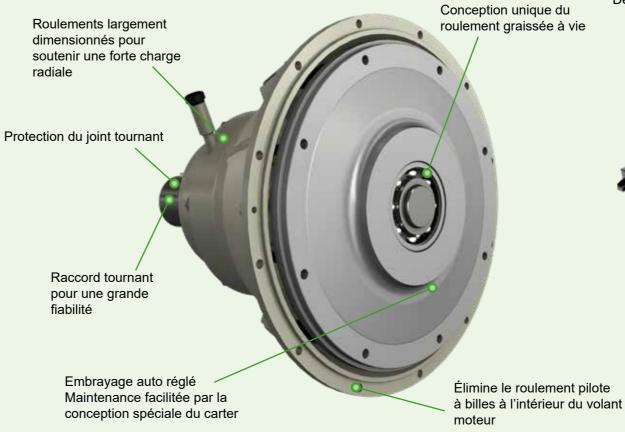


drive with us

TRANSFIUID®


industrial & marine

PRISE DE FORCE A COMMANDE HUILE/AIR



HFR - POUR APPLICATION EN LIGNE OU AVEC CHARGE RADIALE DESIGN AUTOPORTANT ÉLIMINE LES CHARGES RADIALES SUR LE VOLANT MOTEUR

HFO - POUR APPLICATIONS CHARGE RADIALE

COMMANDE HUILE / AIR

- commande à distance enclenchée par bouton
- réglage automatique, sans aucune action de l'opérateur

UNIQUE CLUTCH DESIGN

- design compact
- capacité de couple élevée
- élimine le roulement pilote du volant moteur (HFO)
- pas de charge radiale sur le volant (HFR)
- interface standard SAE
- étanche à la poussière pour conditions environnementales difficiles
- service simplifié en cas de remplacement de disque
- installation facile
- disques de friction en Kevlar (à l'exception de HFR 2010) pour applications heavy duty et de torsion active

MFO

La prise de force mécanique **MFO** est constituée d'un embrayage commandé par levier avec un arbre et des roulements montés sur un carter en fonte rigide.

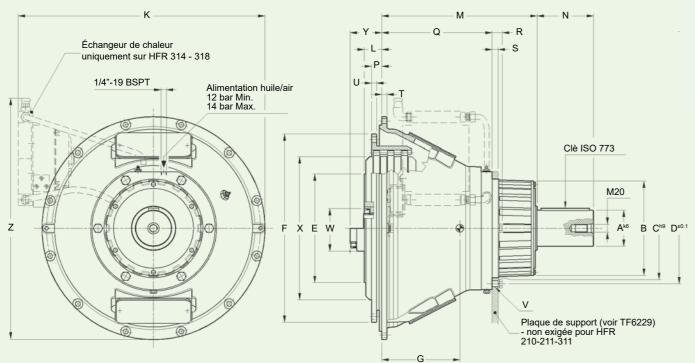
Elle a été conçue pour les applications en ligne et à charges latérales pour les moteurs à combustion interne avec des dimensions de volants / carters de volants industriels SAE standards.

Les prises de force mécaniques MFO permettront :

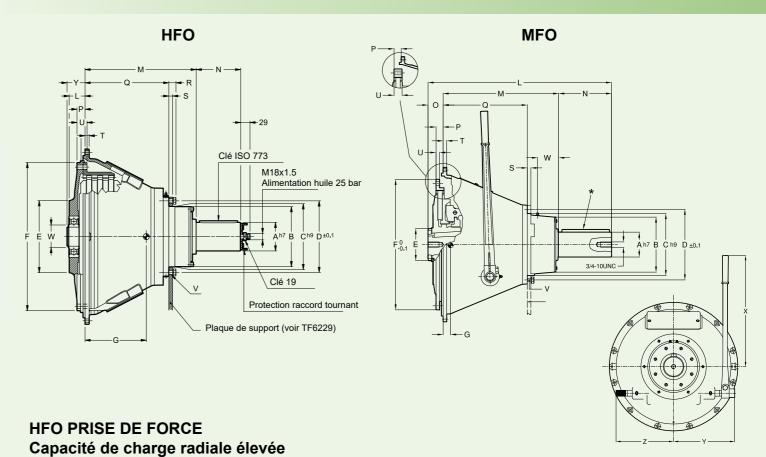
- de simplifier le temps d'installation (pas d'alignement de roulement pilote requis)
- d'augmenter la disponibilité et la durée utile du moteur
- De réduire l'inventaire.

OPTIONS:

MPCB R5


Bloc d'alimentation à air (jusq'à -5°C)

Bloc d'alimentation à huile


PRISE DE FORCE À COMMANDE HUILE/AIR HFR

	Dimensions																							
TAILLE	SAE Volant	SAE Carter	Α	В	С	D	Е	F	L	М	N	Р	Q	R	s	т	U		٧	х	Υ	w	K	z
	Taille	Taille																Ø	Nr.					
210	4	10"	60	155			90	314.3	63	220	110	53.8				11	47			254	83	70		
211	3-2	11½"	00	133	-	-	90	352.4	54.5	235	110	39.6	-	-	-	''	47.5	-	-	289	68	/0	-	-
311	3-2-1	11/2	80	177			223.5		49.5	280	140	39.0				12	80			209	63.5	90		
314	1-0	14"	90	234	245	275	270	466.7	43.2	384.8	140	25.4	273.3	27	15	12.7	12.7	15	6X60°	355	45.2	75	650	563
318	0	18"	110	258	265	305	385 5	571.5	40	515 180	15.7	380	32	18	14	16	17	0.00	457	45	85	810	662	

	Données Techniques											
TAILLE	VITESSE MAX rpm	COUPLE D'ENTRÉE MAX KEVLAR (at 12 bar) Nm	COUPLE D'ENTRÉE MAX STANDARD (at 12 bar) Nm	CAPACITÉ THERMIQUE EMBRAYAGE Q	LUBRIFICATION PALIER EN SORTIE	POIDS kg	DIMENSION CENTRE DE GRAVITÉ G					
210	2800	-	1300	517	Graisse	63	48					
211	2800	1400	-	514	Graisse	78	54					
311	2800*	2250	1700	747	Graisse	127	84					
314	2100	4900	3600	1128	Huile	206	137					
318	2100	7750	-	1980	Huile	368	155					

Pour les charges radiales consenties, voir les instructions de sélection
 Les dimensions sont soumises à modification sans préavis
 * Pour les applications en ligne, avec une charge radiale, la limite diminue

Dimensions																						
TAILLE	TAILLE SAE Volant Taille A B C D E F L M N P Q R S T U V W X Y																					
314	1-0	14"	90	236	245	275	225.5	466.7	49.9	350.3	140	25.4	273.3	27	15	12.7	31.7	15	6x60°	73.4	-	56.8

	Données Techniques											
TAILLE	VITESSE MAX rpm	COUPLE D'ENTRÉE MAX KEVLAR (at 12 bar) Nm	COUPLE D'ENTRÉE MAX STANDARD (at 12 bar) Nm	CAPACITÉ THERMIQUE EMBRAYAGE Q	LUBRIFICATION PALIER EN SORTIE	POIDS kg	DIMENSION CENTRE DE GRAVITÉ G					
314	2400	4900	3600	1128	Grease	167	130					

Pour les charges radiales consenties, voir les instructions de sélection
 Les dimensions sont soumises à modification sans préavis

MFO: PRISE DE FORCE MÉCANIQUE

	Dimensions																						
TAILLE Volant Carter A B C D E F L M N O P Q S T U W X								v	z														
IAILLE	Taille	Taille	A	В	"			-	``	၂		"	Ø	Nr.	vv	^	ı	_					
MFO110	4	10"	57.1	146	165.1	-	58	314.3	415.9	251.6	96.8	67.5	53.8	159.4	9.53	11.1	22.2	-	-	66.8	314	255.6	247.6
MFO111	3	11½"	57.1	146	158.7	184.1	58	352.4	466.2	300.7	101.6	63.9	39.6	183.4	12.7	11.1	22.2	6	9	96.3	314.9	255.6	247.6
MFO114	4	14"	76.2	171.4	190.5	222.2	85		530.7	348.4	128.3	54.1		250.8	12.7	12.7	12.7	6	13.5	65.9	476.5	263.7	247.6
MFO214	1	14	88.9	196.8	222.2	251.6	85	466.7	656.8	413.5	189.3	54.1	25.4	403.1	12.7	12.7	12.7	6	13.5	75.4	477.2	254.8	247.6

		Dor	nnées Techniques		
TAILLE	DIMENSION CENTRE DE GRAVITÉ G	VITESSE MAX rpm	COUPLE D'ENTRÉE MAX KEVLAR Nm	COUPLE D'ENTRÉE MAX STANDARD Nm	POIDS kg
MFO110	78	2800	-	610	56
MFO111	86	2500	1000	770	74
MFO114	111	2300	-	2050	125
MFO214	148	2300	-	4050	167

⁻ Les dimensions sont soumises à modification sans préavis

HF-MFO Prise de force - 2204

drive with us

TRANSFLUID industrial & marine

HFR

application en ligne et charge radiale alimentation à huile/air 12 bar

Les embrayages HFR ont été conçus pour compléter la gamme des prises de force TRANSFLUID pour de nouveaux marchés potentiels.

La commande huile-air est pourvue par une alimentation radiale en huile ou air au lieu d'un schéma axial comme pour le HFO : cette configuration permet de monter les accouplements et/ou les arbres du cardan sur l'arbre de sortie.

La commande par huile ou air est contrôlée extérieurement et pénètre dans l'embrayage radialement, directement dans le support du palier.

Contrôle et gestion du matériel HFO-HFR :

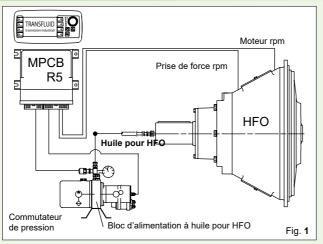
- Par circuit hydraulique client
- Par MPCB R5 avec bloc de contrôle hydraulique, par un monitorage constant de certains paramètres, le fonctionnement correct de la transmission est garanti. Toute condition anormale est détectée rapidement et des contremesures sont mises en oeuvre immédiatement pour protéger la transmission ainsi que le moteur
- Par bloc d'alimentation huile/air : un système d'alimentation compact qui fournit aussi bien de l'huile ou de l'air avec une pression appropriée
- Par MPCB R5 avec bloc d'alimentation à huile (seulement pour HFO)

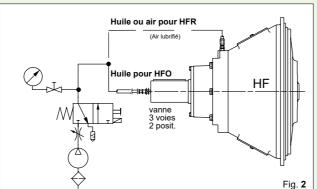
HFO

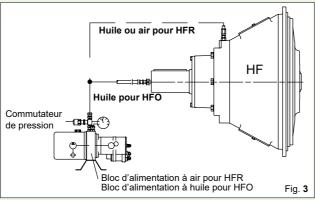
application charge radiale alimentation à huile 25 bar

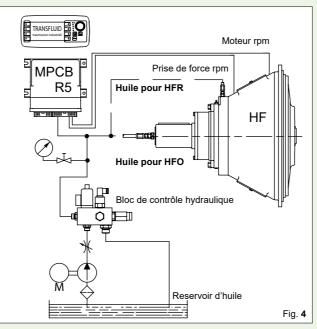
Les embrayages HFO ont été développés par TRANSFLUID pour répondre à la demande croissante du marché relative aux prises de force appliquées aux moteurs industriels à grande vitesse, avec de nombreux chevaux et avec un fonctionnement à distance.

Le HFO consiste en un bloc embrayage avec commande à huile (plaques sèches) avec un arbre et des roulements convenables pour des charges radiales importantes, dans un carter en fonte qui permet une installation facile du moteur.

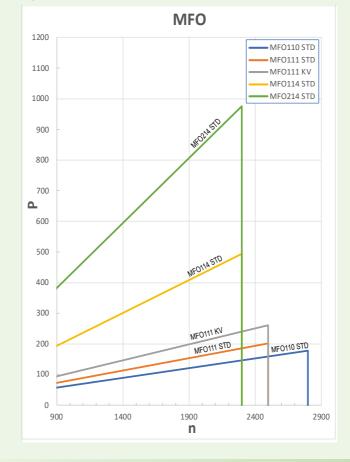

La commande de l'embrayage est fournie par un raccord tournant monté sur l'arbre de sortie ; ceci ne permet l'utilisation de la HFO que pour les applications poulies/courroies.


L'actionnement par l'huile permet une commande à distance ainsi qu'un couple transmissible plus fort que celui permis par les PTO traditionnelles. De plus, de par la pression continue exercée sur les disques, la HFO est un embrayage à récupération automatique du jeu, ce qui réduit drastiquement les coûts de maintenance, spécialement dans les applications « heavy duty » pour lesquelles l'usure des disques est importante.


En plus du HFO, il existe le design HFF (arbre avec brides par QD). Ce modèle est conçu pour les fraiseuses de chaussée où une typologie compacte est exigée.


MFO

- Pas d'installation liée à la panne de roulement de butée de Moteur
- Équipement avec colliers d'embrayage à roulements à billes
- L'absence de charge directe sur le vilebrequin du moteur augmente la durée utile des roulements du moteur
- Conception du roulement principal à deux tonnelets
- Les bagues d'entraînement sont en fonte nodulaire de fer ou d'acier



GUIDE DE SÉLECTION

Graph.. 1

Graph. 2

Tab. 1

		MOTEUR	PRIMAIRE		
	inte	ombustion erne dindres		•	Classification charge machine entraînée
	Jusqu'à 10 heures/ jour	Plus de 10 heures/ iour	Jusqu'à 10 heures/jour	Plus de 10 heures/jour	
NO *	1.25	1.5	1.75	2	Charge uniforme
APPLICATION FACTOR F*	1.5	1.75	2	2.25	Choc modéré
AP F	2	2.25	2.5	2.75	Choc intense 1
	2.25	2.5	2.75	3	Choc intense 2

^{*} Conformément à la norme AGMA

ÉTAPE 1 – SÉLECTION RAPIDE

- Charge uniforme: coupleurs, propulsion marine, ventilateur, pompe centrifuge, compresseur, générateur, jet d'eau.
- Choc modéré : fraiseuse de chaussée, concasseur conique, pompe volumétrique, souffleuse à neige, foreuse, pompe pour drague.
- Choc intense 1 : concasseur à mâchoires, impacteur, machine pour la fabrication de copeaux de bois, déchiqueteur, broyeur, broyeur à marteau.
- Choc intense 2 : compresseur réciproque, pompes à pistons.

F: facteur d'application (voir tableau 1)

kW: puissance brute (kW)
n: vitesse (trs/min)

P = kW • F

- L'engagement PDF doit être effectué à une vitesse moteur proche du ralenti
- L'intervalle entre les démarrages doit être d'1 heure minimum (le coupleur hydraulique monté sur l'arbre de sortie de la PDF permet 3 démarrages/heure régulièrement espacés).
- Pour de plus amples informations techniques, consulter le Manuel d'Installation et de Maintenance.

DISQUES DE FRICTION EN KEVLAR:

- Pour des applications à usage intensif et avec des effets de torsion importants, l'utilisation de disques en Kevlar est recommandée.
- Pour des applications de charge radiale, l'HFR avec des disques en Kevlar doit être utilisé.

ÉTAPE 2 – VÉRIFICATION CAPACITÉ THERMIQUE

T : couple d'entrée max (Nm) - voir tableau p. 3 et 4

J : inertie (kgm 2) = GD 2 /4

t : temps de démarrage (secondes) - glissement réel

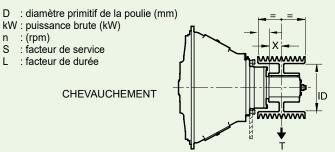
Q : capacité thermique de l'embrayage - voir tableau p. 3 et 4

$$t = \frac{J \cdot n}{9.55 \cdot T} \qquad kW \cdot t \le Q$$

Dans le cas d'une valeur Q plus élevée que celle indiquée dans le tableau des données techniques (voir pages 3 et 4), la dimension de l'embrayage doit être revue.

0.746 kW = 1 hp 25.4 mm = 1 inch 0.042 kgm² = 1 lbs • ft² 1.356 Nm = 1 lbs • ft

HF-MFO PRISE DE FORCE - 2204 5 HF-MFO Prise de force - 2204 6



ÉTAPE 3 – CHARGE RADIALE AUTORISÉE HFO/HFR GRAPHIQUE 2

- Durée de vie du palier calculée à plus de 5000 heures Vitesses de jante supérieures à 35 m/s, la stabilisation dynamique de la poulie est recommandée
- Les courroies de réglage doivent être autorisées par TRANSFLUID
- La distance « X » est selon la typologie de courroie et le numéro

Charge radiale réelle appliquée « T »

(a) T [kN] =
$$\frac{S \cdot kW \cdot L \cdot 191 \cdot 100}{D \cdot n}$$

AVIS IMPORTANT

- L'inobservation de la compatibilité du système de torsion pourrait provoquer des dommages aux composants dans le train d'entraînement causant une perte de mobilité ou de transmission de puissance pour laquelle l'entraînement est prévu. Au minimum, l'incompatibilité du système de torsion pourrait provoquer un bruit indésirable et une vibration à basses vitesses.
- La responsabilité pour s'assurer que la charge de torsion du système soit satisfaisante réside dans l'assembleur d'entraînement et le matériel entraîné.
- L'accélération de grandes charges d'inertie pourrait nécessiter des applications spéciales ou des réductions des dimensions des unités prévues. TRANSFLUID est disposée à aider à trouver des solutions aux problèmes d'inertie potentiels qui se rapportent à la prise de force.

Facteur de service	s
Transmission par chaîne ou engrenage	1.0
Courroies en V	2.2

Life Factor	L
Charges cycliques et par choc	2.1
Charge radiale moyenne-haute	1.8
Charge radiale faible 1.2	1.2
Charge radiale moyenne-basse (tendeur courroie hydraulique)	0.9

Tab. 2

HFO	Chevauchement max admissible* [mm]	ID poulie min* [mm]
314	50	245

Tab. 3

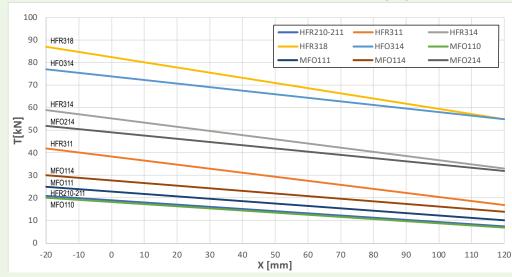
HFR	Chevauchement max admissible* [mm]	ID poulie min* [mm]
210	71	155
211	71	155
311	83	177
314	83	233
318	102	263

Tab. 4

MFO	Chevauchement max admissible* [mm]	ID poulie min* [mm]				
110	55	165				
111	85	160				
114	55	190				
214	60	220				

^{*} Le dimensioni sono valori limite. Aggiungere dello spazio per le parti rotanti

Sélection HFR/HFO basée sur la charge radiale autorisée :


- Calculer la charge radiale avec la formule (a).
- Insérer la charge radiale et la distance X.
- Sélectionner l'embrayage.h.

EXAMPLE:

charge radiale T = 65 kN distance X = 30 mm sélectionner HFO 314- Clutch

- La vitesse de référence de l'embrayage dans le graphique 2 est 2100 rpm
- Si la vitesse du moteur est supérieure à la valeur indiquée ci-dessus, contacter TRANSFLUID pour une demande d'homologation.

CHARGE RADIALE AUTORISÉE T contre DISTANCE X Graphique 3

CHINA

TRANSFLUID BEIJING TRADE CO. LTD Beijing Ph.: +86.10.60442301-2 tbtcinfo@transfluid.cn

FRANCE

TRANSFLUID FRANCE s.a.r.l. 38110 Rochetoirin Ph.: +33.9.75635310 tffrance@transfluid.eu

THE NETHERLANDS

TRANSFLUID NORTH EUROPE B.V. NL-3992 AK, Houten Ph. +31 (0)85 4868530 info@bellmarine.nl

RUSSIA

TRANSFLUID OOO Moscow Ph. +7.495.7782042 tfrussia@transfluid.eu

USA

TRANSFLUID LLC Auburn, GA 30011 Ph.: +1.770.8221.777 tfusa@transfluid.us

Global web site: www.transfluid.eu • E-commerce web site: www.buy-transfluid.com